搜索

x
中国物理学会期刊

基于盲噪声估计与迭代滤波降噪的鬼成像方法

CSTR:32037.14.aps.74.20250544

Ghost imaging method based on blind noise estimation and iterative filtering denoising

CSTR:32037.14.aps.74.20250544
PDF
HTML
导出引用
  • 针对传统鬼成像目标重建算法在低测量次数下重建质量较差的问题, 本文提出了一种结合盲噪声估计与迭代滤波降噪的目标重建方法, 旨在优化低测量数据条件下的鬼成像效果, 提升目标重建质量. 为解决噪声和欠采样带来的不准确重建, 首先通过伪逆运算和单位矩阵提高测量矩阵的稳定性, 然后计算修正项以优化桶探测器的观测数据. 使用平衡的全一列向量作为初始值, 以加速收敛. 在迭代过程中, 引入一种新的目标图像降噪算法, 该算法结合了盲噪声估计、块匹配三维滤波和导向滤波. 这种动态滤波有效保留了每次迭代中的重要细节, 即便在测量次数较低的情况下, 仍能实现高质量的目标重建. 仿真和实验结果表明, 该方法在边缘保留和纹理细节质量上优于传统方法, 为鬼成像技术在遥感和医学成像等领域的应用提供重要的技术支持.

    This paper introduces an adaptive blind noise dynamic filtering for ghost imaging reconstruction (ABNDF-GIR), a novel method of optimizing ghost imaging data with a limited number of measurements, significantly improving image quality and peak signal-to-noise ratio (PSNR). To address the challenges of noise and undersampling, we first enhance the stability of the measurement matrix by using pseudoinversion and a unit matrix, and calculate correction terms for bucket detector observations to optimize the reconstruction process. A balanced all-one column vector is used as the initial value to accelerate convergence. For iterative computation, we propose a novel filtering and denoising technique, the adaptive denoising window-based guided filtering with BM3D (ADW-BG), which integrates blind noise estimation, block matching and 3D filtering, and guided filtering. This dynamic filtering method effectively preserves important details during each iteration, and can achieve high-quality target reconstruction even with fewer measurements. Extensive simulations and experimental results verify that our method is significantly superior to traditional filtering methods and various compressiv sensing algorithms, especially in edge preservation and texture detail enhancement. The proposed technique provides a key technical advancement for the application of ghost imaging in fields such as remote sensing and medical imaging, showing significant advantages in real-world imaging scenarios.

    目录

    返回文章
    返回
    Baidu
    map