搜索

x
中国物理学会期刊

硒直接掺杂获得宽温区高性能n型Bi2Te3基热电材料

CSTR:32037.14.aps.75.20250853

Selenium direct doping obtained high-performance-n-type Bi2Te3-based thermoelectric materials with a wide temperature range

CSTR:32037.14.aps.75.20250853
PDF
HTML
导出引用
  • Bi2Te3基化合物因其优异的电输运性能和较低热导率在近室温热电材料中备受关注, 研究表明固溶和掺杂是优化Bi2Te3基材料性能的有效途径. 目前, 硒(Se)作为掺杂剂的n型Bi2Te3–x Sex基材料已有研究报道, 但Te位Se直接掺杂对其缺陷结构、微观组织及能带间隙的调控机理尚未得到系统研究. 本文系统研究了Te位Se直接掺杂对三元n型Bi2Te3–x Sex基化合物的缺陷结构、微结构及带隙的调控行为及其对热电输运性能的影响规律. Se掺杂Te位点形成n型施主缺陷 \mathrmSe_\textTe^\text• , 抑制 \textBi_\textTe^\prime 反位缺陷并促使Bi回归本征位, 同时产生Te间隙原子( \textTe_\mathrmi^\times )和空位缺陷( \textV_\textTe^\text•• ), 优化载流子浓度和迁移率, 有效提高材料的电性能. 此外, 过饱和Te以间隙原子形式扩散析出形成第2相. Se掺杂通过点缺陷引发的质量与应变场波动增强声子散射, 显著降低晶格热导率. 随x增大, 样品带隙增大, 本征激发引起的双极效应所导致的性能恶化被显著抑制. 结果, Bi2Te2.7Se0.3样品在300—500 K温区获得最大平均zT值(zTave)为0.73. 退火后因样品微结构优化, Bi2Te2.4Se0.6样品功率因子提高, 热导率下降, 420 K时获得最大zT值为0.81, 300—500 K温区zTave为0.76. 这表明Se直接掺杂可以拓宽最佳zT值对应温区, 退火工艺可进一步优化其热电性能. 该研究为开发宽温区高性能近室温热电材料提供了研究思路.

    Bi2Te3-based compounds have attracted great attention in near-room-temperature thermoelectric applications because of their excellent electrical transport properties and low thermal conductivity. Solid solutions and doping can effectively optimize the performance of Bi2Te3-based materials. Currently, n-type Bi2Te3–x Sex materials doped with selenium (Se) have been reported. However, the regulatory mechanisms of Se doping directly at Te sites on their defect structure, microstructure, and bandgap have not yet been systematically investigated. This work systematically investigates the regulatory behavior of Se doping directly at Te sites on the defect structure, microstructure, and bandgap of ternary n-type Bi2Te3–x Sex compounds, and its influence on thermoelectric transport properties. The Se substitution at Te sites forms n-type donor defects \textSe_\textTe^\text• , inhibits the formation of Bi′Te antisite defects, and facilitates the return of Bi atoms to their intrinsic lattice sites, while introducing Te interstitial atoms ( \textTe_\mathrmi^\times ) and Te vacancies ( \textV_\textTe^\text•• ) and optimizing both carrier concentration and mobility, thereby effectively enhancing the electrical performance. Furthermore, supersaturated Te diffuses out as interstitial atoms and precipitates to form secondary phases. Se doping enhances phonon scattering via mass and strain field fluctuations induced by point defects, leading to a significant reduction in lattice thermal conductivity. As x increases, the bandgap of the sample is widened, resulting in significant suppression of the performance degradation caused by the intrinsic-excitation-induced bipolar effect. Consequently, the Bi2Te2.7Se0.3 sample achieves a maximum average zT (zTave) value of 0.73 in a temperature range of 300–500 K. After annealing, the optimization of the sample’s microstructure leads to an enhanced power factor and reduced thermal conductivity in the Bi2Te2.4Se0.6 sample, achieving a maximum zT value of 0.81 at 420 K and a zTave value of 0.76 in the temperature range of 300–500 K. These results demonstrate that Se doping directly at Te sites can broaden the temperature range corresponding to the optimal zT values, and that the annealing process can further optimize the thermoelectric performance. This study provides significant insights for developing high-performance near-room-temperature thermoelectric materials applicable to broad operating temperatures.

    目录

    返回文章
    返回
    Baidu
    map