搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

杨傅子

From plasmon to nanoplasmonics-the frontiers of modern photonics and the role of liquid crystals in tuneable nanoplasmonics

Yang Fu-Zi
PDF
导出引用
  • 本综述首先较为系统地介绍了近代光子学的一个重要分支——纳米等离子激元学(nanoplasmonics)中有关基础概念的物理、光学背景及推动该学科的演绎发展脉络. 这包括由在平滑界面上的光学表面波(optical surface wave)从物理上导出表面等离子激元(surface plasmon polariton, SPP)的概念, 再由粗糙表面及较大金属颗粒对SPP的影响, 引出线度远小于光波长的纳米金属颗粒与光电磁波的相互作用的结果: 本地表面等离子激元(localized surface plasmon polariton)的存在, 亦即纳米等离子激元学的基础. 在简介了纳米等离子激元学器件系统如何在诸多领域突破了传统光学的束缚, 演绎开辟出了近代光学研究的许多特异的新领域后, 特别关注了近期迅速发展并引起越来越多关注的可调制的纳米等离子激元学(tuneable nanoplasmonics)器件的领域. 液晶材料在光学响应方面特有的可调制特性, 使其在纳米等离子激元学器件的调制中成为一个具有非常实用意义的探索方向. 本综述介绍了这方面研究的最新进展, 并对存在的挑战及可能的发展方向等也进行了相应的探讨.
    This review is intended to be a fundamental lecture. It focuses on systematically introducing the reader to the physical and optical background to certain basic concepts in nanoplasmonics, before devoting attention to the many new developments at the frontiers of modern photonics, such as tuneable nanoplasmonics. There is a special discussion of the advantages and applications of liquid crystals in this area. First, in optics according to the special requirements of an optical surface wave propagating alone a smooth boundary the concept of surface plasmon polariton (SPP) has been introduced from physics. After discussing the influences from more rough surfaces upon the SPP and the response from larger metallic particles to the optical electro-magnetic waves the results from interaction between the optical waves and metallic particles with dimensions much small than the wavelength of the optical waves-the exist of the local surface plasmon polariton, i.e. the base of nanoplasmonics, has been confirmed. Secondly, this review describes many new and interesting aspects from this important branch at the frontiers of modern photonics-nanoplasmonics, which are supported by metamaterials consisting of metallic particles with various shapes and nano-scale size from modern manufacture technologies and more powerful and functional software. Many device system based upon these aspects have broken through the limitations of classical optics and developed in many special new directions, for example the quantum coincidence of lasers-Spaser (surface plasmon amplification by stimulated emission of radiation) etc. Finally, we address tuneable nanoplasmonics, which is a very important topic that has warranted great attention. by reason of liquid crystals’ many special advantages in optical responses-for example their larger optical birefringence, which can be easily modulated by applying electric and/or magnetic fields etc.-the application of liquid crystals in tuneable nanoplasmonic devices is a more practical research direction. This review introduces recent developments in this area, and also discusses various challenges and possible research topics.
      • 基金项目:清华大学科研发展基金(批准号:120050121)资助的课题.
      • Funds:Project supported by the Scientific Research Development Foundation of Tsinghua University, China (Grant No. 120050121).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

    • [1] 王志鹏, 关宝璐, 张峰, 杨嘉炜.内腔亚波长光栅液晶可调谐垂直腔面发射激光器. 必威体育下载 , 2021, 70(22): 224208.doi:10.7498/aps.70.20210957
      [2] 王志鹏, 张峰, 杨嘉炜, 李鹏涛, 关宝璐.表面液晶-垂直腔面发射激光器阵列的热特性. 必威体育下载 , 2020, 69(6): 064203.doi:10.7498/aps.69.20191793
      [3] 耿逸飞, 王铸宁, 马耀光, 高飞.拓扑表面等离激元. 必威体育下载 , 2019, 68(22): 224101.doi:10.7498/aps.68.20191085
      [4] 刘仿, 李云翔, 黄翊东.基于双表面等离子激元吸收的纳米光刻. 必威体育下载 , 2017, 66(14): 148101.doi:10.7498/aps.66.148101
      [5] 席思星, 王晓雷, 黄帅, 常胜江, 林列.基于扭曲向列液晶空间光调制器的矢量光生成. 必威体育下载 , 2015, 64(11): 114204.doi:10.7498/aps.64.114204
      [6] 吴青峻, 吴凡, 孙理斌, 胡晓琳, 叶鸣, 徐越, 史斌, 谢昊, 夏娟, 蒋建中, 张冬仙.基于表面等离子激元的超薄金属减色滤波器的研究. 必威体育下载 , 2014, 63(20): 207801.doi:10.7498/aps.63.207801
      [7] 周振婷, 杨理, 姚洁, 叶燃, 徐欢欢, 叶永红.多层金属纳米点阵的制备及其光学性质的研究. 必威体育下载 , 2013, 62(18): 188104.doi:10.7498/aps.62.188104
      [8] 王五松, 张利伟, 冉佳, 张冶文.微波频段表面等离子激元波导滤波器的实验研究. 必威体育下载 , 2013, 62(18): 184203.doi:10.7498/aps.62.184203
      [9] 王昌辉, 赵国华, 常胜江.基于光子晶体马赫-曾德尔干涉仪的太赫兹开关及强度调制器. 必威体育下载 , 2012, 61(15): 157805.doi:10.7498/aps.61.157805
      [10] 关荣华.表面极化对弱锚定向列液晶盒饱和特性的影响. 必威体育下载 , 2012, 61(15): 156102.doi:10.7498/aps.61.156102
      [11] 王豆豆, 王丽莉, 李冬冬.热可调液晶填充微结构聚合物光纤设计及特性分析. 必威体育下载 , 2012, 61(12): 128101.doi:10.7498/aps.61.128101
      [12] 黄茜, 张德坤, 熊绍珍, 赵颖, 张晓丹.降低表面等离子激元寄生吸收损失的途径研究. 必威体育下载 , 2012, 61(21): 217301.doi:10.7498/aps.61.217301
      [13] 黄茜, 熊绍珍, 赵颖, 张晓丹.表面等离子激元非线性表面增强拉曼散射效应. 必威体育下载 , 2012, 61(15): 157801.doi:10.7498/aps.61.157801
      [14] 佟建波, 黄茜, 张晓丹, 张存善, 赵颖.纳米Ag颗粒表面等离子激元对上转换材料光致发光性能影响的研究. 必威体育下载 , 2012, 61(4): 047801.doi:10.7498/aps.61.047801
      [15] 宋国峰, 汪卫敏, 蔡利康, 郭宝山, 王青, 徐云, 韦欣, 刘运涛.表面等离子激元调制的亚波长束斑半导体激光器. 必威体育下载 , 2010, 59(7): 5105-5109.doi:10.7498/aps.59.5105
      [16] 吴犇, 张会, 朱良栋, 郭澎, 王倩, 高润梅, 常胜江.基于布拉格光纤的磁场调制液晶太赫兹开关. 必威体育下载 , 2009, 58(3): 1838-1843.doi:10.7498/aps.58.1838
      [17] 殷建玲, 黄旭光, 刘颂豪, 胡社军.液晶调制的光子晶体可控偏光片和光开关. 必威体育下载 , 2006, 55(10): 5268-5276.doi:10.7498/aps.55.5268
      [18] 郑俊娟, 孙 刚.周期排列的电介质小球所诱发的金属-电介质表面上的表面等离子激元的光学性质. 必威体育下载 , 2005, 54(11): 5210-5217.doi:10.7498/aps.54.5210
      [19] 刘红.双轴向列相液晶的表面能. 必威体育下载 , 2002, 51(12): 2786-2792.doi:10.7498/aps.51.2786
      [20] 刘 红.丝状相液晶由表面相互作用产生的相变. 必威体育下载 , 2000, 49(7): 1321-1326.doi:10.7498/aps.49.1321
    计量
    • 文章访问数:8167
    • PDF下载量:648
    • 被引次数:0
    出版历程
    • 收稿日期:2014-12-14
    • 修回日期:2015-03-30
    • 刊出日期:2015-06-05

      返回文章
      返回
        Baidu
        map