-
在大功率压电超声换能器中设计合理的声子晶体缺陷结构, 可以实现对杂散振动模态的有效抑制. 但当换能器尺寸较大时, 声子晶体缺陷结构对换能器设备辐射面的位移振幅改善情况仍不理想. 如何既能有效抑制有害振动, 又能保证换能器的工作效率, 提高换能器辐射面的位移振幅, 一直都是功率超声领域亟待解决的难题. 研究发现, 声学表面结构可以实现能量的单向传输, 更好地降低能量损耗, 提高能量传输的效率. 基于此, 本文提出了的研究. 通过在换能器中设计合理的缺陷和声表面结构, 激发声波的强局域化效应, 实现声学反常透射, 大幅提高换能器纵向辐射声功率. 同时利用数据分析技术, 对声学表面结构和缺陷结构的材料成分、几何结构参数对换能器性能的影响进行分析, 建立大功率压电超声换能器的性能预测模型, 实现换能器的优化设计. 从定量研究的角度出发, 系统性地提出一种大功率压电超声换能器优化设计的新理论和新方法. 仿真和实验证明, 本研究可以提高大功率压电超声换能器的创新设计能力和设计的智能化水平, 使得换能器在大功率应用环境中振动模态更加单一, 大幅提高了辐射面的位移振幅和振幅分布均匀度.
-
关键词:
- 声表面和缺陷调控 /
- 大功率压电超声换能器 /
- 局域化效应 /
- 性能预测
Researches have shown that a reasonably designed phononic crystal defect structure in high-power piezoelectric ultrasonic transducers can effectively suppress stray vibration modes. However, when the size of the transducer is large, the improvement of the displacement amplitude of the radiation surface of the transducer device by the phononic crystal defect structure is still not so ideal. How to effectively suppress harmful vibrations while ensuring the operational efficiency of transducers and enhancing the displacement amplitude of their radiating surfaces has always been a challenging problem in the field of power ultrasonics that needs to be solved urgently. Researches have found that acoustic surface structures can achieve unidirectional energy transmission, effectively reduce energy loss, and enhance the efficiency of energy transmission. Based on this, the high-power piezoelectric ultrasonic transducers with surface and defect regulation are investigated in this work. By designing reasonable defects and acoustic surface structures in the transducer, strong localization effects of sound waves can be excited to achieve acoustic anomalous transmission, significantly increasing the longitudinal radiated sound power of the transducer. At the same time, a data analysis technique is used to analyze the influence of material composition and geometric parameters of acoustic surface structure and defect structure on the performance of transducers, and a performance prediction model is established for high-power piezoelectric ultrasonic transducers, ultimately achieving optimized design of transducers. In this study, a new theory and method are systematically proposed for optimizing the design of high-power piezoelectric ultrasonic transducers quantitatively. Simulation and experimental results show that the innovative design capability and intelligent level of high-power piezoelectric ultrasonic transducers can be improved, making the vibration mode of the transducer more singular in high-power application environments, and thus significantly improving the displacement amplitude and amplitude distribution uniformity of the transducer radiation surface. -
Keywords:
- acoustic surface and defect control /
- high-power piezoelectric ultrasonic transducer /
- localization effect /
- performance prediction
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] -
部件 材料属性 形状 半径/mm 半径/mm 高/mm 后盖板 AISI 4340 钢 等截面圆柱 31 31 30 压电陶瓷圆环(两片) PZT-4压电陶瓷 等截面圆环 7 (内径) 30 (外径) 8 前盖板 6063-T83铝 圆台 31 (上底) 50 (下底) 35 换能器 位移振幅Aave/mm 分布均匀度Du
/%总辐射功率
/mW缺陷结构 0.2180 × 10–3 87.73 0.04818 管柱结构 0.2109 × 10–3 90.56 0.04904 表面与缺陷结构 0.3015 × 10–3 93.56 0.1181 比值(表面与缺陷/缺陷) 1.384 1.066 2.450 比值(表面与缺陷/管柱) 1.430 1.033 2.407 A B C D 后盖板表面凹槽厚度w/mm 19015.485 1.544 –0.09065 0.004986 楔形体孔的宽度w1 /mm 19003.333 13.94 –0.4575 –0.02117 正常散射体空气圆柱孔半径r8/mm 21299.902 –36.52 0.000 –50.71 空气圆柱孔的高度h4/mm 20530.792 –202.5 8.669 –0.1261 环状体槽的内半径r7/mm 19015.083 2.116 11.49 3.530 A B C D 后盖板表面凹槽厚度w/ mm 0.0002939 6.991×10–6 0.000 0.000 楔形体孔的宽度w1/mm 3.048×10–4 –2.717×10–6 3.576×10–7 0.000 正常散射体空气圆柱孔半径r8/mm 6.102×10–4 –1.155×10–4 0.000 2.187×10–6 空气圆柱孔的高度h4/mm 3.063×10–4 –2.397×10–6 1.375×10–7 1.373×10–10 环状体槽的内半径r7/mm 3.005×10–4 –4.852×10–6 2.407×10–5 –6.396×10–6 A B C D 后盖板表面凹槽厚度w/mm 0.9355 –0.0004441 3.130×10–5 4.060×10–7 楔形体孔的宽度w1/mm 0.9798 –0.04139 0.003935 –0.0003165 正常散射体空气圆柱孔半径r8/mm –0.3622 0.4834 0.000 –0.009487 空气圆柱孔的高度h4/mm 0.5726 –0.004406 0.003738 –0.0001257 环状体槽的内半径r7/mm 0.9600 –0.1010 0.05795 –0.01953 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26]
计量
- 文章访问数: 283
- PDF下载量: 5
- 被引次数: 0