搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

引用本文:
Citation:

黄承宁, 刘倍雷, 王越超, 高兴誉, 咸家伟, 刘海风, 宋海峰
cstr: 32037.14.aps.74.20250574

Elastic properties and their pressure dependence of rare earth metals

HUANG Chengning, LIU Beilei, WANG Yuechao, GAO Xingyu, XIAN Jiawei, LIU Haifeng, SONG Haifeng
cstr: 32037.14.aps.74.20250574
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 稀土金属在工程技术领域具有重要应用, 同时因其与f电子相关的独特行为受到凝聚态物理的广泛关注. 本文结合第一性原理计算与数据汇编, 对稀土金属的弹性性质随原子序数变化开展分析, 并以Ce和Yb为例, 对高压0—15 GPa范围内的弹性演化进行研究讨论, 对比了不同f电子处理方法的模拟表现. 结果表明, 稀土金属随原子序数变化存在明显的延展性差异, 在压力作用下的相变处弹性性质会发生显著改变. 特别是, 在Ce的fcc同构相变和Yb的fcc-bcc相变中出现脆、延性转变. 这些与随原子序数或压力条件改变发生的成键特性变化密切相关. 此外, 研究发现, 将f电子作为芯层电子处理的模拟方法能够较好地描述稀土金属在常压下的弹性性质, 但在描述高压下的结构相变及弹性性质演化趋势时, 将f电子作为价电子并考虑电子关联效应修正的处理方法则更为有效. 本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00150中访问获取.
    Rare earth metals are of significant importance in engineering and technological applications, and their unique f-electron-related behaviors have attracted widespread interest in condensed matter physics. In this work, we investigate the elastic properties of rare earth metals ranging from Ce to Yb by combining first-principles calculations with systematic data compilation. Taking Ce and Yb as representative cases, we investigate the evolution of their elastic properties under high-pressure conditions (0–15 GPa), and we systematically compare the simulation performances of different f-electron treatment approaches. The results indicate a significant difference in ductility between light and heavy rare earth metals under ambient pressure. Under pressure, the elastic properties of Ce and Yb undergo marked changes in phase transitions. Specifically, the B/G ratio, a key indicator of ductility, decreases from about 2.0 in light lanthanides to around 1.5 in heavy lanthanides, crossing the critical threshold of 1.75. Notably, during the fcc iso-structural phase transition in Ce and the fcc-bcc phase transition in Yb, a significant brittle-ductile transition is observed. These transitions are closely related to the bonding characteristics modulated by atomic number or pressure condition. For instance, as the atomic number increases, the Cauchy pressure (C12C44) decreases with the variation of s and d valence electrons, indicating an enhanced covalent bonding tendency. In addition, this study reveals that simulating f-electrons as core electrons can adequately describe the elastic properties and trends of rare earth metals under ambient pressure. However, when modeling high-pressure structural phase transitions and their related elastic evolution, the method of treating f-electrons as valence electrons and performing electron correlation correction shows better accuracy. The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00150.
      Corresponding author: WANG Yuechao, yuechao_wang@126.com ; SONG Haifeng, song_haifeng@iapcm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3501503) and the National Natural Science Foundation of China (Grant No. U2230401).
    [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

  •   Method B/GPa G/GPa C11 C12 C44 C13 C33 B/G Ref.
    Ce f-band 39.80 33.24 63.20 28.10 50.90 1.19 This work
    GGA+OP, f-band 40.89 [16]
    PBE, f-core 29.23 13.72 39.29 24.21 20.45 2.13 This work
    PBE, f-core 34.62 [21]
    GGA, f-core 30.21 15.86 43.46 23.59 21.71 1.90 [22]
    γ -Ce PBE+U 27.20 15.76 40.59 20.52 21.33 1.73 This work
    Expt. 14.83 12.86 24.1 10.2 19.4 1.15 [25]
    Pr PBE, f-band 20.64 18.75 39.30 11.31 22.80 1.10 This work
    GGA+OP, f-band 20.88 [16]
    PBE, f-core 31.66 16.45 44.80 25.10 23.20 1.92 This work
    GGA, f-core 36.65 [21]
    GGA, f-core 34.57 18.83 60.77 25.36 17.4 17.88 67.34 1.83 [22]
    PBE+U 24.27 11.58 35.20 18.80 14.60 2.09 This work
    Expt. 28.80 14.80 1.95 [24]
    Nd PBE, f-band 18.9 14.95 30.90 12.90 21.00 1.26 This work
    GGA+OP, f-band 20.98 [16]
    PBE, f-core 33.9 18.55 49.10 26.29 25.70 1.83 This work
    GGA, f-core 39.12 [21]
    GGA, f-core 36.12 20.77 65.24 25.88 19.11 17.77 71.77 1.74 [22]
    PBE+U 28.57 25.65 46.90 19.41 38.90 1.11 This work
    Expt. 31.8 16.3 1.95 [24]
    Pm PBE, f-band 20.67 14.81 31.60 15.20 22.00 1.2 This work
    GGA+OP, f-band 19.92 [16]
    PBE, f-core 35.67 20.37 52.40 27.31 28.20 1.75 This work
    GGA, f-core 39.21 [21]
    GGA, f-core 37.96 23.21 70.36 24.63 21.00 18.62 77.17 1.64 [22]
    PBE+U 16.80 10.94 24.20 13.10 17.20 1.54 This work
    Expt. 35.37 16.70 2.12 [23]
    Sm PBE, f-band 18.70 4.87 18.10 19.00 18.50 3.84 This work
    GGA+OP, f-band 19.91 [16]
    PBE, f-core 36.81 21.72 54.60 27.91 30.10 1.69 This work
    GGA, f-core 38.94 [21]
    GGA, f-core 36.91 19.60 61.81 21.27 18.64 24.56 68.58 1.88 [22]
    PBE+U 12.10 7.39 15.90 10.21 13.70 1.64 This work
    Expt. 29.46 12.68 2.32 [23]
    Eu PBE, f-band 14.33 7.51 16.60 13.20 17.70 2.32 This work
    PBE, f-core 12.93 9.07 17.61 10.60 16.80 1.43 This work
    GGA, f-core 14.67 [21]
    GGA, f-core 12.52 8.40 16.46 10.55 16.34 1.49 [22]
    PBE+U 12.20 7.56 16.20 10.21 13.80 1.61 This work
    Expt. 14.75 5.90 2.5 [23]
    Gd PBE, f-band 30.50 16.31 42.70 24.40 24.00 1.87 This work
    GGA+OP, f-band 28.99 [16]
    Gd PBE, f-core 39.54 24.12 59.60 29.50 33.10 1.64 This work
    GGA, f-core 36.74 [21]
    GGA, f-core 41.73 22.11 68.26 21.00 21.01 30.04 80.3 1.89 [22]
    PBE+U 31.64 19.06 47.10 23.91 26.60 1.66 This work
    Expt. 38.40 22.31 1.72 [23]
    Tb PBE, f-band 24.37 16.76 36.50 18.30 25.20 1.45 This work
    GGA+OP, f-band 30.15 [16]
    PBE, f-core 41.37 25.17 62.70 30.70 34.10 1.64 This work
    GGA, f-core 36.28 [21]
    GGA, f-core 40.87 22.77 68.43 20.07 21.85 28.59 79.25 1.79 [22]
    PBE+U 32.90 15.70 46.10 26.31 21.40 2.09 This work
    Expt. 39.99 22.90 1.75 [23]
    Dy GGA+OP, f-band 29.08 [16]
    PBE, f-core 41.27 25.48 62.80 30.50 34.60 1.62 This work
    GGA, f-core 36.74 [21]
    GGA, f-core 42.14 24.48 70.93 20.53 23.97 20.53 28.75 1.72 [22]
    Expt. 38.50 25.45 1.51 [23]
    Ho PBE, f-band 29.09 14.26 35.90 25.69 27.50 2.04 This work
    GGA+OP, f-band 29.88 [16]
    PBE, f-core 42.14 26.15 64.80 30.80 34.90 1.61 This work
    GGA, f-core 38.20 [21]
    GGA, f-core 44.12 26.26 75.40 22.30 26.74 29.63 85.06 1.68 [22]
    PBE+U 14.63 7.03 15.50 14.19 20.40 2.08 This work
    Expt. 39.75 26.73 1.49 [23]
    Er PBE, f-band 32.73 9.51 34.40 31.90 26.00 3.46 This work
    GGA+OP, f-band 29.95 [16]
    PBE, f-core 42.60 27.78 65.60 31.10 34.80 1.53 This work
    GGA, f-core 40.12 [21]
    GGA, f-core 45.82 28.60 81.54 24.27 28.85 28.34 88.05 1.60 [22]
    PBE+U 29.43 17.13 35.70 26.30 37.50 1.72 This work
    Expt. 41.15 29.68 1.38 [23]
    Tm PBE, f-band 20.75 15.21 47.70 8.86 9.02 3.86 58.40 1.36 This work
    GGA+OP, f-band 27.93 [16]
    PBE, f-core 42.93 26.46 67.00 30.90 34.20 1.62 This work
    GGA, f-core 42.41 [21]
    GGA, f-core 48.23 31.02 88.44 25.58 30.28 28.04 94.21 1.58 [22]
    PBE+U 21.81 10.97 25.60 19.92 24.59 1.99 This work
    Expt. 44.5 30.5 1.45 [24]
    Yb PBE, f-band 16.63 10.55 20.10 14.89 24.10 1.58 This work
    PBE, f-core 15.87 9.35 18.60 14.50 22.30 1.69 This work
    GGA, f-core 15.58 [21]
    GGA, f-core 16.34 10.72 23.21 12.91 17.44 1.52 [22]
    PBE+U 10.68 3.82 17.66 13.33 20.75 2.79 This work
    Expt. 13.13 9.9 1.33 [24]
    下载: 导出CSV
    Baidu
  • [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

  • [1] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 必威体育下载 , 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 必威体育下载 , 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [3] 吕常伟, 王臣菊, 顾建兵. 高温高压下立方氮化硼和六方氮化硼的结构、力学、热力学、电学以及光学性质的第一性原理研究. 必威体育下载 , 2019, 68(7): 077102. doi: 10.7498/aps.68.20182030
    [4] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究. 必威体育下载 , 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [5] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 必威体育下载 , 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [6] 王浩玉, 农智升, 王继杰, 朱景川. AlxCrFeNiTi系高熵合金成分和弹性性质关系. 必威体育下载 , 2019, 68(3): 036101. doi: 10.7498/aps.68.20181893
    [7] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究. 必威体育下载 , 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [8] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究. 必威体育下载 , 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [9] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 必威体育下载 , 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [10] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 必威体育下载 , 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [11] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 必威体育下载 , 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [12] 范开敏, 杨莉, 孙庆强, 代云雅, 彭述明, 龙兴贵, 周晓松, 祖小涛. 六角相ErAx (A=H, He)体系弹性性质的第一性原理研究. 必威体育下载 , 2013, 62(11): 116201. doi: 10.7498/aps.62.116201
    [13] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 必威体育下载 , 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [14] 王斌, 刘颖, 叶金文. 高压下TiC的弹性、电子结构及热力学性质的第一性原理计算. 必威体育下载 , 2012, 61(18): 186501. doi: 10.7498/aps.61.186501
    [15] 汝强, 胡社军, 赵灵智. LixFePO4(x=0.0, 0.75, 1.0)电子结构与弹性性质的第一性原理研究. 必威体育下载 , 2011, 60(3): 036301. doi: 10.7498/aps.60.036301
    [16] 陈海川, 杨利君. LiGaX2(X=S, Se, Te)的电子结构,光学和弹性性质的第一性原理计算. 必威体育下载 , 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [17] 李晓凤, 刘中利, 彭卫民, 赵阿可. 高压下CaPo弹性性质和热力学性质的第一性原理研究. 必威体育下载 , 2011, 60(7): 076501. doi: 10.7498/aps.60.076501
    [18] 侯榆青, 张小东, 姜振益. 第一性原理计算MAlH4(M=Na, K)的结构和弹性性质. 必威体育下载 , 2010, 59(8): 5667-5671. doi: 10.7498/aps.59.5667
    [19] 杨天兴, 成强, 许红斌, 王渊旭. 几种三元过渡金属碳化物弹性及电子结构的第一性原理研究. 必威体育下载 , 2010, 59(7): 4919-4924. doi: 10.7498/aps.59.4919
    [20] 周晶晶, 陈云贵, 吴朝玲, 庞立娟, 郑欣, 高涛. 钒基固溶体储氢材料弹性性质第一性原理研究. 必威体育下载 , 2009, 58(10): 7044-7049. doi: 10.7498/aps.58.7044
计量
  • 文章访问数:  939
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-29
  • 修回日期:  2025-05-23
  • 上网日期:  2025-06-11
  • 刊出日期:  2025-08-05

返回文章
返回
Baidu
map