-
偏振探测是获取光矢量信息的重要手段, 广泛应用于光通信、智能感知与生物传感等领域. 二维范德瓦耳斯材料因其独特的各向异性与可调电学特性, 为实现高性能偏振探测提供了新的材料平台, 但这类材料存在本征吸收弱、响应效率有限等局限性. 等离激元结构可在微纳尺度实现强局域光场调控, 是突破上述局限性、提升探测性能的重要手段. 本文系统梳理了等离激元微纳结构与范德瓦耳斯材料的光学耦合机制, 分析了不同类型等离激元结构在各类偏振光探测中的作用与优势. 最后, 讨论了该方向在偏振敏感光通信、片上光计算与信息处理、仿真视觉与图像识别等前沿领域的应用前景, 展望了未来研究面临的机遇与挑战.
-
关键词:
- 偏振探测 /
- 等离激元 /
- 范德瓦耳斯材料 /
- 表面等离激元极化 /
- 局域表面等离激元共振
Polarization detection is a fundamental way to obtain the vectorial nature of light, supporting advanced technologies in the fields of optical communication, intelligent sensing, and biosensing. Two-dimensional van der Waals materials have become a promising platform for high-performance polarization-sensitive photodetectors due to their inherent anisotropy and tunable electronic properties. Nevertheless, their intrinsically weak light absorption and limited photoresponse efficiency remain major bottlenecks. Plasmonic nanostructures, which can achieve strong localized field confinement and manipulation on a nanoscale, provide an effective strategy to overcome these limitations and substantially improve device performance. In this review, we systematically summarize the coupling mechanisms between plasmonic architectures and vdW materials, highlighting near-field enhancement, plasmon-induced hot-carrier generation, and mode-selective polarization coupling as key physical processes for enhancing photocarrier generation and polarization extinction. Representative devices including metallic gratings, hybrid nanoantennas, and chiral metasurfaces are compared in terms of responsivity, detection speed, operating bandwidth, and polarization extinction ratio, revealing consistent improvements of one to two orders of magnitude over bare vdW devices. We further survey emerging applications in the fields of high-speed polarization-encoded optical communication, on-chip optical computing and information processing, and bioinspired vision and image recognition systems, where plasmonic-vdW hybrid detectors demonstrate unique advantages in miniaturization and energy efficiency. Finally, we discuss current challenges such as large-scale fabrication of uniform plasmonic arrays, spectral bandwidth broadening, and seamless integration with complementary photonic circuits, and outline future opportunities for next-generation polarization-resolved optoelectronic platforms.-
Keywords:
- polarization detection /
- plasmonics /
- van der Waals materials /
- surface plasmon polariton /
- localized surface plasmon resonance
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] -
等离激元结构 二维材料 增强机制 响应度/(A·W–1) 探测率D*/Jones 响应时间 偏振比 响应光谱范围 文献 各向异性纳米结构 BP LSPR 802.42 — 6.36 ps 118.4 615—740 nm
765—865 nm[63] BP LSPR 14.2 — < 90 μs 8.7 1.55—4 μm [65] MoS2/In2Se3 SPPs 28.5 9.81×1012 上升: 195 ns
下降: 222 ns1.88 近红外波段 [68] 周期性光栅 ReS2/WSe2 Mie scattering 27.3 — 3.7 ms 12.6 405—532 nm [59] 石墨烯 SPPs 2.95 0.28×107 上升: 39 ms
下降: 32.1 ms6.65 635—1550 nm [61] In2Se3 SPPs 0.53 2.5×1010 上升: 380 μs
下降: 300 μs–1.1 633 nm至
近红外波段[72] 手性结构 In2Se3 LSPR 0.19 — 上升: 320 μs
下降: 425 μs1.6×104 500—1100 nm [76] 石墨烯 LSPR 15.6 — < 667 ns ≥ 1 中红外波段 [77] MoS2 SPPs ~1×10–4 — 上升: 14 μs
下降: 11 μs3 1200—1600 nm [95] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107]
计量
- 文章访问数: 1515
- PDF下载量: 54
- 被引次数: 0








下载: