搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

引用本文:
Citation:

吴广宁, 钱鹏宇, 刘汶佶, 高国强, 李红艳
cstr: 32037.14.aps.74.20251169

Research progress of high-speed railway pantograph arc: Influencing factors and prevention methods

WU Guangning, QIAN Pengyu, LIU Wenji, GAO Guoqiang, LI Hongyan
cstr: 32037.14.aps.74.20251169
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 弓网滑动电接触是高速列车获取能量的唯一途径. 随列车速度、牵引功率提升以及在复杂多变环境中运行, 弓网电弧发生率提高、物性参数改变、危害增加, 严重威胁高铁安全. 本文系统综述了弓网电弧研究进展, 梳理了弓网电弧物理特性、仿真及试验研究方法, 重点分析了运行参数与环境条件对弓网电弧的影响机理及规律, 归纳了防治策略并探讨了电弧能量利用等新方向. 现有工作充分研究了运行参数对弓网电弧危害的影响, 但对弓网电弧物性参数及演化机理的研究较少, 缺乏对覆冰等特殊工况下弓网电弧特性的研究; 且现有弓网电弧防护手段需针对复杂环境工况进行改进, 以满足我国高铁大规模跨区域运行时的弓网电弧防护需求. 基于综述提出两点未来展望: 1)要厘清特殊环境弓网电弧物性参数, 探明“环境工况-物性参数-电弧行为”关联机制, 为精准预测提供基础; 2)要从“源头抑制-界面防护-过程干预”出发, 建立弓网电弧高效防治体系. 本文旨在为中国高速铁路弓网系统的可靠受流与电弧防治提供理论参考与工程借鉴.
    The pantograph-catenary system (PCS) serves as the exclusive means of power supply for high-speed trains. As train speeds increase, traction power rises, and operations take place in complex and variable environments, pantograph arcing has become more frequent. This phenomenon is accompanied by changes in physical properties and increased hazards, which seriously threaten the safety of high-speed railways. This paper systematically reviews the recent researches on pantograph arc, and outlines physical characteristics, experimental techniques, and simulation methods. The study focuses on analyzing the effects and mechanisms of operating parameters and environmental conditions on pantograph arc, summarizes prevention strategies, and explores applications such as arc energy utilization. Existing research has sufficiently examined how operational parameters affect arc hazards, yet studies on arc physical properties and evolution mechanisms remain limited, particularly regarding special conditions such as icing. Current protection methods also require adaptation to complex environments to meet the growing demands for arc management. Two future research priorities are proposed: first, clarifying the physical properties of an arc under special environments and establishing the correlation among “environmental conditions, an arc’s physical properties, and its behavior” to enable accurate prediction; second, developing an efficient arc prevention system through the approach of “source suppression, interface protection, and process intervention”. This review aims to provide theoretical and practical guidance for realizing reliable current collection and effective arc control in high-speed railway PCS in China.
      通信作者: 高国强, xnjdggq@163.com
    • 基金项目: 四川省自然科学基金创新研究群体(批准号: 2024NSFTD0009)和国家重点研发计划“交通基础设施”专项(批准号: 2024YFB2606302)资助的课题.
      Corresponding author: GAO Guoqiang, xnjdggq@163.com
    • Funds: Project supported by the Innovative Research Group Project of the Natural Science Foundation of Sichuan Province, China (Grant No. 2024NSFTD0009) and the National Key Research and Development Program of China (Grant No. 2024YFB2606302).
    [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

    [59]

    [60]

    [61]

    [62]

    [63]

    [64]

    [65]

    [66]

    [67]

    [68]

    [69]

    [70]

    [71]

    [72]

    [73]

    [74]

    [75]

    [76]

    [77]

    [78]

    [79]

    [80]

    [81]

    [82]

    [83]

    [84]

    [85]

    [86]

    [87]

    [88]

    [89]

    [90]

    [91]

    [92]

    [93]

    [94]

    [95]

    [96]

    [97]

    [98]

    [99]

    [100]

  • 模型名称 仿真目标 不足
    柯西-梅尔模型[33] 电弧电压、电流等外部参数 难以描述电弧局部及形态变化对外部参数带来的扰动
    磁流体动力学(MHD)
    模型[18]
    电弧形态、温度、流场分布等宏观发展
    特征及物理特性
    运算量大, 仿真耗时长, 难以模拟弓网电弧发展全过程
    链式电弧模型[49] 电弧形态、等效受力与发展演化全过程 难以追踪电弧温度、流场的动态变化, 精细程度低于MHD模型
    神经网络预测模型[1,50] 电弧特征参数及危害预测 对训练集数据的质量要求极高
    下载: 导出CSV

    碳滑板及其材料名称密度
    /(g·cm–3)
    冲击强度
    /(kJ·m–2)
    电阻率
    /(μΩ·m)
    RMPCS[87]3.857.19.5
    PyC-Cuf/C[88]1.965.88
    C/C-Cu[27]2.248.616.27
    C/C-Cuf[27]2.13256.3
    Cf/Cu/C[26]2.0826.71.67
    C/Cu[26]3.5913.312.6
    Cuf/Cf/C-35
    (碳纤维含量35%)[89]
    1.9213.58.2
    Cuf/Cf/C-40
    (碳纤维含量40%)[89]
    1.8617.97.8
    Cuf/Cf/C-45
    (碳纤维含量45%)[89]
    1.9622.17.5
    纯碳滑板[89]1.67840
    下载: 导出CSV
    Baidu
  • [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

    [59]

    [60]

    [61]

    [62]

    [63]

    [64]

    [65]

    [66]

    [67]

    [68]

    [69]

    [70]

    [71]

    [72]

    [73]

    [74]

    [75]

    [76]

    [77]

    [78]

    [79]

    [80]

    [81]

    [82]

    [83]

    [84]

    [85]

    [86]

    [87]

    [88]

    [89]

    [90]

    [91]

    [92]

    [93]

    [94]

    [95]

    [96]

    [97]

    [98]

    [99]

    [100]

计量
  • 文章访问数:  878
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-29
  • 修回日期:  2025-10-23
  • 上网日期:  2025-11-10
  • 刊出日期:  2025-12-05

返回文章
返回
Baidu
map