-
二维磁性材料是指厚度极薄且能够维持长程磁有序的纳米材料. 这类材料展现出明显的磁各向异性, 并由于量子限制效应与高比表面积特性, 导致电子能带结构与表面状态发生显著变化, 因此具有丰富而可调控的磁性, 并在自旋电子学领域展现出巨大的应用潜力. 二维磁性材料包含层间通过弱范德瓦耳斯力堆叠而成的层状材料和三维方向均通过化学键结合的非层状材料. 当前大多数研究都集中在二维层状材料, 而这些材料的居里温度普遍远低于室温, 且空气稳定性差. 相比之下, 非层状结构增强了材料的结构稳定性, 同时表面丰富的悬挂键增加了修饰其物理性质的维度. 这类材料正日益受到学术界的广泛关注, 并且它们的合成与应用已取得了重大进展. 本综述首先梳理了各种二维非层状磁性材料的制备方法, 并系统介绍了近5年来在各类材料中获得的二维非层状本征磁性材料以及它们在超薄极限下涌现出的一系列新奇物理现象, 同时也讨论了理论计算在揭示这些新奇现象时的关键作用以及修饰磁性的一些重要手段. 最后展望了二维非层状磁性材料在自旋电子器件中的应用潜力与发展方向.Two-dimensional (2D) magnetic materials refer to nanomaterials with an extremely thin thickness that can maintain long-range magnetic order. These materials exhibit significant magnetic anisotropy, and due to the quantum confinement effect and high specific surface area, their electronic band structures and surface states undergo remarkable changes. As a result, they possess rich and tunable magnetic properties, showing great application potential in the field of spintronics. The 2D magnetic materials include layered materials, where layers are stacked by weak van der Waals forces, and non-layered materials, which are bonded via chemical bonds in all three-dimensional directions. Currently, most of researches focus on 2D layered materials, but their Curie temperatures are generally much lower than room temperature, and they are always unstable when exposed to air. In contrast, the non-layered structure enhances the structural stability of the materials, and the abundant surface dangling bonds increase the possibility of modifying their physical properties. Such materials are attracting increasing attention, and significant progress has been made in their synthesis and applications. This review first systematically summarizes various preparation methods for 2D non-layered magnetic materials, including but not limited to ultrasound-assisted exfoliation, molecular beam epitaxy, and chemical vapor deposition. Meanwhile, it systematically reviews the 2D non-layered intrinsic magnetic materials obtained in various types of materials in the past five years, as well as a series of novel physical phenomena emerging under the ultrathin limit, such as thickness-dependent magnetic reconstruction dominated by quantum confinement effects and planar topological spin textures induced by 2D structures. Furthermore, it also discusses the critical role played by theoretical calculations in predicting new materials through high-throughput screening, revealing microscopic mechanisms by analyzing magnetic interactions, as well as some important methods of modifying magnetism. Finally, from the perspectives of material preparation, physical mechanisms, device fabrication, and theoretical calculations, the current challenges in the field are summarized, and the application potential and development directions of 2D non-layered magnetic materials in spintronic devices are prospected. This review aims to provide comprehensive references and scientific perspective for researchers engaged in this field, thereby promoting further exploration of the novel magnetic properties of 2D non-layered magnetic materials and their applications in spintronic devices.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] -
材料 分类 制备方法 厚度/尺寸 磁性 居里(奈尔)
温度/K空气
稳定性发表
年份Cr[70] 单元素金属 电子束驱动的
原位还原法单原子层/8 nm2 反铁磁性 — — 2020 Cr2Te3[71] 金属硫族
化合物盐辅助CVD法 1.6—7.1 nm
/>0.93 mm铁磁性 ~280 — 六方FeTe[45] 金属硫族
化合物直接CVD法 2.8 nm/>60 μm 铁磁性 170(4 nm)—
220(30 nm)0.5 h MnP[52] 其他 直接CVD法 30—50 nm
/数十微米铁磁性 >303 — 六方FeTe[72] 金属硫族
化合物直接CVD法 平均~3.7 nm
/~120 μm铁磁性 ~300 — 2021 γ-Fe2O3[34] 金属氧化物 Co催化的CVD法 4—9 nm
/>20 μm亚铁磁性 >300 >3 m VO2[67] 金属氧化物 应变工程
诱导二维化4.8 nm
/平均~200 nm铁磁性 >300 >3 m Fe7Se8[43] 金属硫族
化合物空间限域CVD法 3.5—45 nm
/>20 μm亚铁磁性 >300 K >1 m MnSe2[14] 金属硫族
化合物软化学刻蚀法 (21.4±0.7) nm
/(2.3±0.1) μm铁磁性 ~320 K — α-MnSe[73] 金属硫族
化合物盐辅助CVD法 5.63—7.82 nm
/19.5—42.6 μm反铁磁性 ~160 K — SrRu2O6[39] 金属氧化物 超声辅助剥离法 ~1.3—2.2 nm
/数十纳米-数百纳米反铁磁性 — — CrTe[74] 金属硫族
化合物直接CVD法
+超声辅助剥离法0.8—50 nm
/数微米-数十微米铁磁性 ~367 K >1 m ε-Fe2O3[30] 金属氧化物 空间限域CVD法 4.0—44.6 nm 亚铁磁性 ~291 K >3 m 2022 Fe[51] 单元素金属 空间限域CVD法 4.0—37.4 nm
/数微米-数十微米铁磁性 >300 K >6 d Cr2X3
(X = S, Se, Te)[22]金属硫族
化合物衬底预处理的
CVD法3.5 nm/30 μm(Cr2S3),
1.6 nm/30 μm(Cr2Se3),
2.3 nm/200 μm
(Cr2Te3)亚铁磁性(Cr2S3)、
自旋玻璃态(Cr2Se3)、
铁磁性(Cr2Te3)~170 K(Cr2Te3) — CoFe2O4[38] 金属氧化物 分子筛辅助的
CVD法2—4 nm/数十微米 亚铁磁性 >390 K >1 m FeSe[75] 金属硫族
化合物溶剂热法 2.90—2.95 nm
/1.0—2.2 μm反铁磁性 ~553 K >1 m Cr5Te8/vdW
垂直异质结[76]金属硫族
化合物直接CVD法 1.6—52.1 nm
/~144 μm铁磁性 ~165 K
(7.2 nm)>1 m Fe5Se8, Fe3Se4[44] 金属硫族
化合物直接CVD法 —/0.5—4 μm
(Fe5Se8),
8 nm/20 μm(Fe3Se4)铁磁性(Fe5Se8) ~300 K >6 h(酸性
溶液中)2023 γ-Fe2O3[33] 金属氧化物 空间限域CVD法 10—47 nm
/数百纳米-数十微米亚铁磁性 — >4 m Ni掺杂的CoO[65] 金属氧化物 直接CVD法 6.1 nm
/11.4 μm铁磁性 ~180 K — Fe7S8[77] 金属硫族
化合物分子筛辅助的
CVD法2.0—22.6 nm
/2—22 μm亚铁磁性 >300 K — FeS[42] 金属硫族
化合物直接CVD法 6.1—30.6 nm
(SiO2/Si衬底)/—
0.6 nm
(WSe2衬底)/—亚铁磁性 >300 K — CuCrSe2[16] 金属硫族
化合物电化学剥离法 1.49 nm/— 铁磁性(单层和
偶数层)、
反铁磁性(奇数层)~120 K — α-MnSe/Cr2Se3
横向和纵向
异质结[66]金属硫族
化合物直接CVD法 1.1 nm(横向异质结)
5 nm(纵向异质结)/—反铁磁(α- MnSe),
铁磁性(Cr2Se3)— >7 d
(α-MnSe)Cr2Ge2Te6@
Cr2Te3[69]金属硫族
化合物自然氧化
形成二次相— 铁磁性 ~160 K — Fe3O4[35] 金属氧化物 分子筛辅助的
CVD法1.9—38.2 nm
/毫米级薄膜亚铁磁性 ~350 K >5 m Fe3O4[36] 金属氧化物 直接CVD法 0.5—25 nm
/数微米-数十微米亚铁磁性 >850 K >2 y 2024 Cr2S3[21] 金属硫族
化合物界面调制的CVD 1.8 nm/1英寸薄膜 铁磁性 ~200 K >7 m Fe3O4[37] 金属氧化物 直接CVD法 3—488 nm
/数微米-数十微米亚铁磁性 — >2 y ε-Fe2O3[19] 金属氧化物 空间限域CVD法 5.5—77.4 nm/165 μm 亚铁磁性 800 K >1 m MnTe[82] 金属硫族
化合物超声辅助剥离法 2—7 nm/数百纳米 反铁磁性(单层),
铁磁性(双层至四层),
反铁磁性(厚度超过5 nm时)— — MnSe2[47] 金属硫族
化合物溶剂热法 4—6 nm
/数十纳米-数百纳米铁磁性 ~309 K — Cr5Te8[40] 金属硫族
化合物空间限域CVD法 0.66 nm/450 μm 铁磁性 ~176 K >10 d AgCrS2[48] 金属硫族
化合物电化学剥离法 1.25 nm/数十微米 铁磁性 ~115 K — Cr2S3[78] 金属硫族
化合物超声辅助剥离法 3.4 nm
/几纳米-几微米反铁磁性 — >1 m
(在NMP中)γ-Ga2O3[68] 金属氧化物 应变工程
诱导二维化(3.7±0.2) nm/数百纳米 铁磁性 ~300 K — FeSb[17] 其他材料 分子束外延法 1 nm/数十纳米 铁磁性 >390 K — ε-Fe2O3[31] 金属氧化物 空间限域CVD法 6.6—42.6 nm
/2.9—16.7 μm亚铁磁性 — >10 m 2025 Cr2Se3[18] 金属硫族
化合物直接CVD法 4—22 nm
/数微米-数十微米反铁磁性 ~46 K — CuFeS2[20] 金属硫族
化合物盐辅助CVD法 ~9 nm
/数微米-数十微米反铁磁性 ~(473.0±0.4) K >14 d CoS2, Co3S4,
CoS[79]金属硫族
化合物直接CVD法 10—15 nm/2—25 μm 铁磁性(CoS2) ~123 K — NiSe[46] 金属硫族
化合物直接CVD法 6—43 nm/7—70 μm 铁磁性 >400 K — Cr5Te8[80] 金属硫族
化合物直接CVD法 4.8—12 nm/~0.19 mm 铁磁性 ~172 K — Cr2Se3[41] 金属硫族
化合物分子束外延法 单层/— 铁磁性 ~225 K — CuFeSeS[81] 二元金属
硫族化合物溶剂热法 20—45 nm
/平均约2.6 μm铁磁性 ~380 K >28 d -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91]
计量
- 文章访问数: 1574
- PDF下载量: 98
- 被引次数: 0








下载:
