搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

引用本文:
Citation:

李永建, 李国玲, 刘啸, 郑捷
cstr: 32037.14.aps.74.20251363

Applications of low-temperature non-equilibrium plasmas in preparation and modification of high-efficiency water electrolysis catalysts

LI Yongjian, LI Guoling, LIU Xiao, ZHENG Jie
cstr: 32037.14.aps.74.20251363
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 氢能是最具发展前景的清洁可再生能源之一, 绿色制氢技术备受关注. 电解水制氢因反应过程环保、产物纯度高且操作简便, 被视为实现规模化绿氢生产的重要途径. 然而, 电解水催化剂普遍存在成本高昂、合成工艺复杂等问题, 严重制约了该技术在新能源领域的产业化应用. 低温等离子体技术凭借其低温高效、高反应活性及独特的电磁场效应, 在功能材料表面改性领域展现出显著优势. 本文系统综述了低温等离子体技术在电解水催化材料制备与改性中的应用, 重点探讨等离子体改性的作用机制, 对电催化反应效率的提升效果. 首先阐述了典型非平衡低温等离子体的物理特性与作用原理; 继而分类评述了近年来该技术在催化材料改性中的研究进展, 包括表面微结构调控、表面物性调控及界面优化等策略; 最后, 基于当前改性机理与应用研究的局限性, 对低温等离子体技术在催化剂设计中的未来发展方向提出了展望.
    Hydrogen energy, as one of the most promising clean and renewable energy sources, has received much attention due to its green production technology. Electrolytic water splitting is regarded as a critical pathway for large-scale green hydrogen production due to its environmentally friendly reaction process, high product purity, and operational simplicity, However, electrocatalysts for water electrolysis commonly face challenges such as high costs and complex synthesis processes, thereby severely hindering the industrial application. Low-temperature plasma (LTP) technology, with its advantages of mild processing conditions, high reactivity, and unique electromagnetic field effects, has demonstrated remarkable potential in the surface modification of materials. This review systematically summarizes the applications of LTP in the preparation and modification of electrocatalytic materials for water splitting, focusing on the mechanism of plasma-induced enhancement in electrocatalytic efficiency. First, the physical characteristics and fundamental principle of typical non-equilibrium low-temperature plasma are elucidated. Subsequently, recent advances in plasma-assisted modification strategies for catalytic materials are categorized and critically discussed, including surface microstructure modulation, surface property regulation and interface optimization. Finally, based on the current limitations in mechanistic understanding and practical applications, future research directions for LTP technology in catalyst design are proposed.
      通信作者: 李国玲, liguoling@qdu.edu.cn ; 郑捷, jiezheng@pku.edu.cn
    • 基金项目: 山东省自然科学基金(批准号: ZR2024MA090)、国家自然科学基金(批准号: 51804174)和江苏省基础研究重点项目(批准号: BK20243033)资助的课题.
      Corresponding author: LI Guoling, liguoling@qdu.edu.cn ; ZHENG Jie, jiezheng@pku.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2024MA090), the National Natural Science Foundation of China (Grant No. 51804174), and the Key Project of Basic Research Program of Jiangsu Province, China (Grant No. BK20243033).
    [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

    [59]

    [60]

    [61]

    [62]

    [63]

    [64]

    [65]

    [66]

    [67]

    [68]

    [69]

    [70]

    [71]

  • 物理量 直流辉光放电 射频辉光放电 DBD
    Te(典型)/eV 0.5—5 [23] 1.0—3.0 [24] 1—5 [25]
    ne(典型)/cm–3 1015—1017 [23] 1018—1019 [24] 1016—1020 [26]
    IED 低压鞘层加速可达几十eV [27] 基底偏压或射频偏置调控几十eV[31] 表面离子能较低, 瞬态流含高能电子[26]
    自由基 较为丰富[28] 较为丰富[29] 非常丰富但寿命短[30]
    典型改性 刻蚀、诱导缺陷 掺杂、诱导相变 表面改性
    下载: 导出CSV
    Baidu
  • [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

    [59]

    [60]

    [61]

    [62]

    [63]

    [64]

    [65]

    [66]

    [67]

    [68]

    [69]

    [70]

    [71]

计量
  • 文章访问数:  652
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-09
  • 修回日期:  2025-11-30
  • 上网日期:  2025-12-03
  • 刊出日期:  2025-12-05

返回文章
返回
Baidu
map