搜索

x
中国物理学会期刊

基于里德伯原子的Loran-C信号接收

CSTR:32037.14.aps.75.20250900

Reception of Loran-C signals based on Rydberg atoms

CSTR:32037.14.aps.75.20250900
PDF
HTML
导出引用
  • Loran-C 系统凭借其低频信号在抗干扰和穿透能力方面的优势, 可作为全球卫星导航系统GNSS(global navigation satellite system)的有效备份, 然而, 传统 Loran-C 接收机存在灵敏度低、体积庞大等固有缺陷. 本文提出一种基于里德伯原子传感器的 Loran-C 信号接收机, 利用参比电极将 Loran-C 低频电场耦合至内置平行电极板的原子气室中, 并使用直流电场辅助优化, 通过电磁感应透明效应结合斯塔克频移效应, 实现对电场强度与相位信息的直接高灵敏度测量. 研究构建了基于FPGA的硬件采集与MATLAB的信号处理平台, 成功实现了天地波识别、时间差提取与定位解算和授时解码, 实验验证了该里德伯原子Loran-C接收机的定位以及授时功能. 研究表明, 里德伯原子传感器有望显著提升Loran-C信号的低频探测灵敏度与动态范围, 为发展下一代高可靠、高性能的导航授时系统开辟了量子传感技术的新途径.

    This work presents a Rydberg-atom-based Loran-C receiver designed to overcome long-standing limitations of traditional systems, including low sensitivity and large size. In the proposed design, a reference electrode couples the low-frequency Loran-C signal into an atomic vapor cell equipped with integrated parallel plates; an auxiliary DC bias field is applied to optimize this coupling. By utilizing electromagnetically induced transparency (EIT) and Stark effect, the receiver can directly, sensitively measure the amplitude and phase of the electric field. An FPGA-based acquisition stage and an MATLAB signal-processing pipeline are implemented to perform ground-wave/sky-wave discrimination, time-difference-of-arrival (TDOA) estimation, position fixing, and timing recovery. Experimental results confirm that the Rydberg-atom-based receiver successfully provides both positioning and timing capabilities. These findings demonstrate that Rydberg-atom sensors can significantly enhance the sensitivity and dynamic range of Loran-C systems at low frequencies, thereby establishing a quantum-sensing pathway toward the next-generation, high-reliability navigation and timing architectures.

    目录

    返回文章
    返回
    Baidu
    map