Due to its unique physical and chemical properties, hydrogen plasma is the preferred gas for cleaning reaction chambers. For better understanding of the transport and diffusion mechanism in hydrogen plasma, this paper presents a two-dimensional fluid model by COMSOL simulation software, and systematically investigates the characteristics of radio-frequency inductively coupled remote hydrogen plasma sources under varying discharge and geometric parameters. The results show that input power primarily affects electron density rather than electron temperature. This phenomenon may be due to the balancing mechanism between the ionisation rate and the loss rate in steady state discharges. The pressure has the opposite effect on the plasma in the driven and spatial afterglow regions. As the pressure rises, the electron density in the driven region increases gradually, while the electron density in the spatial afterglow region decreases gradually. This may be due to the shift from non-local to local electron kinetics as the pressure rises. Increasing input power effectively enhances hydrogen radical density and diffusion flux, suggesting that high power facilitates the transport of hydrogen radicals into the spatial afterglow region. However, elevating operating pressure has a similar effect while reducing hydrogen radical density in the spatial afterglow region. Furthermore, under fixed discharge conditions, increasing geometric parameters appropriately promotes the generation of higher and more uniform hydrogen radical densities within the afterglow region.