搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

引用本文:
Citation:

杨高琛, 马辰龙, 徐浪浪, 史文昊, 黄鑫宇, 孙铭君, 毕铭, 何啸, 孟潇涵, 吕晟杰, 林维佳, 贺敏, 童磊, 叶镭

Integration and Application of Two-Dimensional Materials

Yang Gaochen, Ma Chenlong, Xu Langlang, Shi Wenhao, Huang Xinyu, Sun Mingjun, Bi Ming, He Xiao, Meng Xiaohan, Lv Shengjie, Lin Weijia, He Min, Tong Lei, Ye Lei
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 在后摩尔时代,随着器件物理尺寸的缩放极限和冯·诺依曼架构的局限性逐渐显现,传统硅基集成电路领域面临严峻挑战.然而,二维层状材料凭借无悬挂键、高载流子迁移率、高光生载流子浓度等独特的物理特性,有望突破这些瓶颈.目前,许多二维材料已经实现了规模化生长与应用,在高性能单一功能器件、多功能融合器件、逻辑电路和集成芯片制造与应用当中展现出巨大的潜力.本文综述了二维材料的基本特性、构成的基础功能器件、功能电路模块以及三维集成等方面的研究进展,重点探讨了二维材料在规模化集成方案方面的挑战和解决路径,并为未来的发展方向提出了展望.
    As Moore's Law faces limitations in scaling device physical dimensions and reducing computational power consumption, traditional silicon-based integrated circuit (IC) technologies, after half a century of success, are encountering unprecedented challenges. These limitations are especially apparent in emerging fields such as artificial intelligence, big data processing, and high-performance computing, where the demand for computational power and energy efficiency is growing. Therefore, the exploration of novel materials and hardware architectures is crucial to overcoming these challenges. Two-dimensional (2D) materials, with their unique physical properties such as the absence of dangling bonds, high carrier mobility, tunable band gaps, and high photonic responses, have emerged as ideal candidates for next-generation electronic devices and integrated circuits (ICs). Notably, 2D materials such as graphene, transition metal dichalcogenides (TMDs), and hexagonal boron nitride (h-BN) have demonstrated immense potential in electronics, optoelectronics, and flexible sensing applications.
    This paper provides a comprehensive review of recent advancements in the application of 2D materials in integrated circuits, analyzing the challenges and solutions related to large-scale integration, device design, functional circuit modules, and three-dimensional integration. Through a detailed examination of the basic properties of 2D materials, their constituent functional devices, and multifunctional integrated circuits, this paper presents a series of innovative ideas and methodologies, showcasing the promising application prospects of 2D materials in future ICs.
    The research methodology involves a detailed analysis of the physical properties of common 2D materials (such as graphene, TMDs, and h-BN) and explores typical application cases. It discusses how to utilize the excellent properties of these materials to fabricate high-performance single-function devices, integrated circuit modules, and 3D integrated chips. In particular, the paper focuses on solving the challenges related to large-scale growth, device integration, and interface engineering of 2D materials. By comparing the performance and applications of various materials, it reveals the unique advantages of 2D materials in the semiconductor industry and their potential in IC design.
    Despite the outstanding performance of 2D materials in laboratory environments, significant challenges remain in practical applications, especially in large-scale production, device integration, and three-dimensional integration. Achieving high-quality, large-area growth of 2D materials, reducing interface defects, and improving device stability and reliability are still core issues that need to be addressed by both the research and industrial communities. However, with continuous advancements in 2D material fabrication techniques and optimization of integration processes, these challenges are gradually being overcome, and the application prospects of 2D materials are expanding.
  • [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

    [59]

    [60]

    [61]

    [62]

    [63]

    [64]

    [65]

    [66]

    [67]

    [68]

    [69]

    [70]

    [71]

    [72]

    [73]

    [74]

    [75]

    [76]

    [77]

    [78]

    [79]

    [80]

    [81]

    [82]

    [83]

    [84]

    [85]

    [86]

    [87]

    [88]

    [89]

    [90]

    [91]

    [92]

    [93]

    [94]

    [95]

    [96]

    [97]

    [98]

    [99]

    [100]

    [101]

    [102]

    [103]

    [104]

    [105]

    [106]

    [107]

    [108]

    [109]

    [110]

    [111]

    [112]

    [113]

    [114]

    [115]

    [116]

    [117]

    [118]

    [119]

    [120]

    [121]

    [122]

    [123]

    [124]

    [125]

    [126]

    [127]

    [128]

    [129]

    [130]

    [131]

    [132]

    [133]

    [134]

    [135]

    [136]

    [137]

    [138]

    [139]

    [140]

    [141]

    [142]

    [143]

    [144]

    [145]

    [146]

    [147]

    [148]

    [149]

    [150]

    [151]

    [152]

    [153]

    [154]

    [155]

    [156]

    [157]

    [158]

    [159]

    [160]

    [161]

    [162]

    [163]

    [164]

    [165]

    [166]

    [167]

    [168]

    [169]

    [170]

    [171]

    [172]

    [173]

    [174]

    [175]

    [176]

    [177]

    [178]

    [179]

    [180]

    [181]

    [182]

    [183]

    [184]

    [185]

    [186]

  • [1] 闻雨, 韩素婷, 周晔. 二维材料与人工视觉系统的多维融合: 前沿突破与范式革新. 必威体育下载 , doi: 10.7498/aps.74.20250703
    [2] 崔月赢, 宋俊明, 赵伟玮, 杨昉, 刘宏微, 倪振华, 吕俊鹏. 二维材料宽谱光电探测器研究进展. 必威体育下载 , doi: 10.7498/aps.74.20251115
    [3] 石旗, 田茂鑫, 杨权, 张晓伟, 赵昱达. 基于二维材料光电器件的传感器内计算与应用进展. 必威体育下载 , doi: 10.7498/aps.74.20251093
    [4] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件. 必威体育下载 , doi: 10.7498/aps.73.20231166
    [5] 陈晓娟, 徐康, 张秀, 刘海云, 熊启华. 二维材料体光伏效应研究进展. 必威体育下载 , doi: 10.7498/aps.72.20231786
    [6] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展. 必威体育下载 , doi: 10.7498/aps.72.20222095
    [7] 刘宁, 刘肯, 朱志宏. 集成二维材料非线性光学特性研究进展. 必威体育下载 , doi: 10.7498/aps.72.20230729
    [8] 祝裕捷, 蒋涛, 叶小娟, 刘春生. 新型二维拉胀材料SiGeS的理论预测及其光电性质. 必威体育下载 , doi: 10.7498/aps.71.20220407
    [9] 黄新玉, 韩旭, 陈辉, 武旭, 刘立巍, 季威, 王业亮, 黄元. 二维材料解理技术新进展及展望. 必威体育下载 , doi: 10.7498/aps.71.20220030
    [10] 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展. 必威体育下载 , doi: 10.7498/aps.71.20221424
    [11] 何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国. 基于二维材料的自旋-轨道矩研究进展. 必威体育下载 , doi: 10.7498/aps.70.20210004
    [12] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应. 必威体育下载 , doi: 10.7498/aps.70.20202132
    [13] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法. 必威体育下载 , doi: 10.7498/aps.70.20201425
    [14] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展. 必威体育下载 , doi: 10.7498/aps.69.20191486
    [15] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展. 必威体育下载 , doi: 10.7498/aps.69.20200709
    [16] 徐依全, 王聪. 基于二维材料的全光器件. 必威体育下载 , doi: 10.7498/aps.69.20200654
    [17] 许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元. 新型机械解理方法在二维材料研究中的应用. 必威体育下载 , doi: 10.7498/aps.67.20181636
    [18] 史若宇, 王林锋, 高磊, 宋爱生, 刘艳敏, 胡元中, 马天宝. 基于滑动势能面的二维材料原子尺度摩擦行为的量化计算. 必威体育下载 , doi: 10.7498/aps.66.196802
    [19] 杨晓阔, 蔡理, 康强, 柏鹏, 赵晓辉, 冯朝文, 张立森. 磁性量子元胞自动机逻辑电路的转换特性研究. 必威体育下载 , doi: 10.7498/aps.60.098503
    [20] 李萍剑, 张文静, 张琦锋, 吴锦雷. 基于碳纳米管场效应管构建的纳电子逻辑电路. 必威体育下载 , doi: 10.7498/aps.56.1054
计量
  • 文章访问数:  282
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-27

返回文章
返回
Baidu
map