-
无损获取高分辨率、高衬度微纳米材料结构图像, 并能够原位、 定量分析是X射线成像技术发展方向之一. 最新发展起来的相干X射线衍射成像技术, 也称为无透镜成像技术, 为实现这一目标提供了可能. 本文介绍了相干X射线衍射成像技术的成像原理和发展过程, 以及在材料学和生物学中的一些典型应用和最新进展, 例如掺杂铋元素在硅晶体中的分布成像, GaN量子点壳层结构的三维高分辨成像, 染色大肠杆菌的二维成像, 鱼骨的二维成像及矿化机理研究, 单个未染色疱疹病毒的二维高衬度成像, 未染色酵母菌细胞的三维高分辨成像及原位定量分析. 最后对相干X射线衍射成像技术的发展方向做了展望. 随着X射线自由电子激光的应用和冷冻技术与相干X射线衍射成像技术的结合, 相干X射线衍射成像技术将得到快速的发展和广泛的应用.In site quantitative, high-contrast and high-resolution imaging of micro/nanoscale material is an important goal of the X-ray microscopy and imaging. A novel method which is called lensless imaging or coherent X-ray diffraction imaging, is a promising approach to solving these problems. In this review, a brief introduction to imaging theory and development of coherent X-ray diffraction imaging, and some typical applications in material science and biology are presented. For instance, two-dimensional (2D) imaging of Bi dopant distribution in a Si crystal, quantitative three-dimensional (3D) imaging of a GaN quantum dot with core shell structure, 2D imaging of stained Escherichia coli bacteria, nanoscale imaging and mechanisms of biomineralization of fish bones, 2D high-contrast imaging of an unstained herpes virus, 3D high-resolution imaging of an unstained yeast cell and in situ quantitative analysis are illuminated. Finally, the future prospect of coherent X-ray diffraction imaging is given. With the development of X-ray free electron lasers and combining cryogenic techniques with coherent X-ray diffraction microscopy, coherent diffraction imaging will be a powerful tool and widely used in materials science and biology.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240] [241] [242] [243] [244] [245] [246] [247] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240] [241] [242] [243] [244] [245] [246] [247]
计量
- 文章访问数:11729
- PDF下载量:2445
- 被引次数:0