-
通过数值方法研究了自延迟光、电反馈作用下分布式反馈半导体激光器(DFB-SL)的各种非线性动力学行为. 结果表明, 在不同光反馈强度下DFB-SL输出呈现出单周期、准周期、多周期等多种非线性动力学态. 当外部光反馈达到一定强度后, 激光器输出表现为混沌态; 当光反馈强度较小时, 在不同的电反馈强度下DFB-SL输出也会出现多种非线性动力学态; 当光反馈强度较大时, 改变电反馈强度无法得到单周期的动力学态. 光反馈与电反馈延迟时间也对DFB-SL非线性动力学态有重要影响. 当二者的延迟时间相匹配时激光器的弛豫振荡被增强, 表现为单周期状态, 而在延迟时间不匹配的情况下, 可能引发混沌或不稳定状态. 偏置电流也会对动力学态产生影响, 但随着电流大小单向变化, 动力学态的演化方向不是单一的; 当DFB-SL处于单周期态时, 改变偏置电流会改变单周期振荡频率. 这些发现为自延迟反馈DFB-SL在微波光子信号处理和保密光通信等应用方面提供了重要理论基础, 也为各种非线性科学研究提供了实验手段.
-
关键词:
- 分布式反馈半导体激光器 /
- 自延迟反馈 /
- 非线性动力学态
In this paper, various nonlinear dynamic behaviors of distributed feedback semiconductor laser (DFB-SL) subjected to self-delayed optical and electrical feedback are studied numerically. The results show that the DFB-SL output presents a variety of nonlinear dynamic states such as single-period, quasi-period, and multi-period under different optical feedback intensities. When the external light feedback reaches a certain intensity, the laser output enters a chaotic regime. When the optical feedback intensity is small, a variety of nonlinear dynamic states will appear in the DFB-SL output under different electrical feedback intensities. When the optical feedback intensity is large, the single-period dynamic state cannot be obtained by changing the electrical feedback intensity. The optical feedback and electrical feedback delay time also have a significant influence on the nonlinearity of DFB-SL. When their time delays match, the relaxation oscillation of the laser is enhanced and exhibits a single-period state. And time mismatch may lead to chaos or instability. The bias current also affects the dynamic state, however, the direction of evolution of the dynamic states is not unidirectional as the current changes unidirectionally. When the DFB-SL is in a single-period state, changing the bias current will result in the change of the single-cycle oscillation frequency. These findings provide an important theoretical basis for applying the self-delayed feedback DFB-SL to microwave photonic signal processing and secure optical communication, as well as experimental means for conducting various nonlinear scientific researches.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] -
参数 符号 取值 单位 光子数 $ S\left(t\right) $ — — 载流子数 $ N\left(t\right) $ — — 光功率 $ P\left(t\right) $ — — 微分增益 $ {G}_{{\mathrm{N}}} $ $ (3—4) \times {10}^{4}$ s–1 透明载流子数 $ {N}_{0} $ $ 1.36\times{10}^{8} $ — 阈值光子数 $ {S}_{0} $ $ 4.04\times{10}^{4} $ — 激光腔内反馈时间 $ {\tau }_{{\mathrm{i}}{\mathrm{n}}} $ 9 $ {\mathrm{p}}{\mathrm{s}} $ 光子寿命 $ {\tau }_{{\mathrm{p}}} $ 2 $ {\mathrm{p}}{\mathrm{s}} $ 载流子寿命 $ {\tau }_{{\mathrm{e}}} $ 2 $ {\mathrm{n}}{\mathrm{s}} $ 电子电荷 $ e $ $ 1.6\times{10}^{-19}$ C 限制因子 $ \varGamma $ 0.5 — 自发辐射因子 $ \beta $ $1\times {10}^{-5} $ — 饱和增益因子 $ \varepsilon $ $ (7—8)\times{10}^{-8} $ — 激光器的中心频率 $ {\omega }_{0} $ $ 1.938 \times {10}^{14}~{\mathrm{Hz}} $ — 线宽增强因子 $ a $ 4.5 — -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
计量
- 文章访问数: 366
- PDF下载量: 12
- 被引次数: 0