搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

引用本文:
Citation:

李丽丽, 韩爽, 王玉龙, 刘统江, 李育哲, 高俊国
cstr: 32037.14.aps.74.20250277

Effects of hydrogen bond on molecular structure and charge transport characteristic of polypropylene composites

LI Lili, HAN Shuang, WANG Yulong, LIU Tongjiang, LI Yuzhe, GAO Junguo
cstr: 32037.14.aps.74.20250277
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 模拟分子的结构和行为有助于更深刻地分析电荷输运特性变化的微观机理. 本研究采用分子动力学模拟方法, 深入探究氢键对马来酸(MA)接枝聚丙烯(PP)/聚偏二氟乙烯(PVDF)复合体系分子结构演变与电荷输运特性的调控机制, 并对其分子间相互作用能、自由体积、电子态密度、电荷差分密度以及陷阱能级进行仿真分析. 研究结果表明: 随着MA接枝量的增加, 氢键数量显著增多. 当MA质量分数为36.22%时, 氢键数量达到20的峰值, 分子间相互作用能增至极大值2171.63 kcal·mol–1, 自由体积分布达到极小值16.03%, 此时分子内部结构最为紧密. 当MA质量分数为52.97%时, 复合材料的带隙达到极小值3.13 eV, 陷阱能级深度亦达到极大值3.06 eV, 此时PP/PVDF复合材料在氢键形成的区域显示出更高的电子密度积累, 电子逸出概率显著地降低. 至此, 模拟结果证实了氢键的作用不仅改变了材料的分子结构, 还通过改变局部电荷分布状态直接影响电荷输运特性, 为设计功能性高分子复合电介质材料提供了理论依据.
    Simulating molecular structures and dynamic behaviors presents critical insights into the microscopic mechanisms governing variations in charge transport properties. In this work, molecular dynamics (MD) simulations integrated with the Compass II force field and molecular modeling (including geometry optimization, annealing, and dynamic equilibration) are conducted to systematically analyze intermolecular interaction energy, free volume distribution, electronic density of states (DOS), charge differential density, and trap energy levels. aiming to unravel the regulatory role of hydrogen bonds in the structural evolution and charge transport dynamics of polypropylene (PP)/polyvinylidene fluoride (PVDF) composite systems. A quantitative framework is further established to correlate hydrogen bond density with key material performance metrics, such as free volume fraction, bandgap energy, and trap energy depth, thereby elucidating the hydrogen bond-mediated modulation of molecular architecture and charge transport behavior in PP/PVDF composites. Simulation results reveal a pronounced dependence of hydrogen bond formation on maleic acid (MA) grafting content. When the mass fraction of MA is 36.22%, the number of hydrogen bonds reaches a maximum value of 20, the intermolecular interaction energy increases to 2171.63 kcal·mol–1, and the free volume fraction reaches a minimum value of 16.03%. At this point, the internal structure of the molecule is most compact. When the mass fraction of MA increases to 52.97%, the band gap of the composite material reaches a minimum value of 3.13 eV, and the depth of the trap energy levels also reaches a maximum value of 3.06 eV. Spatial charge differential density analysis demonstrates that the enhanced electron density is localized near hydrogen-bonded region, thus suppressing electron escape probability by over 40% compared with the scenario in the non-bonded domains. All of the findings highlight a dual mechanism: hydrogen bonds not only reconfigure the molecular topology but also reshape the localized charge distribution, directly suppressing the carrier mobility and changing the charge transport pathways. These findings also establish a robust structure-property relationship, showing that hydrogen bond engineering serves as a pivotal strategy to tailor dielectric performance in polymer composites. By optimizing hydrogen bond density, the trade-off between structural compactness and electronic confinement can be strategically balanced, thus enabling the designing of PP-based dielectrics with low carbon footprints and superior insulating properties. This mechanistic understanding provides actionable guidelines for advancing high-performance insulating materials in energy storage systems, aerospace components, and next-generation electrical devices, where precise control over charge transport is paramount.
      通信作者: 王玉龙, wangyulong@hrbust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51577045)、四川省氢能源与多能互补微电网工程技术研究中心开放基金(批准号: 2024DWNY005)和黑龙江省普通高校基本科研业务费专项资金(批准号: 2021-KYYWF-0742)资助的课题.
      Corresponding author: WANG Yulong, wangyulong@hrbust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51577045), the Open Fund Project of Sichuan Provincial Engineering Technology Research Center for Hydrogen Energy and Multi-energy Complementary Microgrid, China (Grant No. 2024DWNY005), and the Fundamental Research Foundation for Universities of Heilongjiang Province, China (Grant No. 2021-KYYWF-0742).
    [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

  • Epotential Function form Parameters and units
    Ebond $ {E_{{\text{bond}}}} = \displaystyle\sum\limits_{{\text{bonds}}} {{k_b}{{(r - {r_0})}^2} + k_b^{(3)}{{(r - {r_0})}^3} + k_b^{(4)}{{(r - {r_0})}^4}} $ kb/(kcal·mol–1·Å–2); r, r0
    Eangle $ {E_{{\text{angle}}}} = \displaystyle\sum\limits_{{\text{angles}}} {{k_\theta }{{(\theta - {\theta _0})}^2} + k_\theta ^{(3)}{{(\theta - {\theta _0})}^3} + k_\theta ^{(4)}{{(\theta - {\theta _0})}^4}} $ kθ/(kcal·mol–1); θ, θ0/(°)
    Etorsion $ {E_{{\text{torsion}}}} = \displaystyle\sum\limits_{{\text{torsions}}} {{k_\varphi }(1 + \cos (n} \varphi - {\varphi _0})) $ kφ/(kcal·mol–1); φ, φ0/(°)
    Eout-of-plane $ {E_{{\text{out-of-plane}}}} = \displaystyle\sum\limits_{{\text{out-of-plane}}} {{k_\omega }{\omega ^2}} $ kω/(kcal·mol–1); ω/(°)
    Evdw $ {E_{{\text{vdW}}}} = \displaystyle\sum\limits_{i, j} {4\varepsilon \left[ {{{\left( {\frac{\sigma }{{{r_{ij}}}}} \right)}^{12}} - {{\left( {\frac{\sigma }{{{r_{ij}}}}} \right)}^6}} \right]} $ Ε/eV; σ/Å; rij
    Eelectrostatic $ {E_{{\text{electrostatic}}}} = \displaystyle\sum\limits_{i, j} {\frac{{{q_i}{q_j}}}{{4\pi {\varepsilon _0}{r_{ij}}}}} $ qi, qj/e; rij
    下载: 导出CSV

    试样编号
    PP-g-MA/%
    PVDF/%
    MAPP
    1#077.9422.26
    2#2.7475.5221.74
    3#5.3373.4121.26
    4#10.1369.5720.30
    5#14.5065.9419.56
    6#18.4762.8318.70
    7#22.0559.8418.11
    8#36.2248.5115.27
    9#52.9735.3411.69
    下载: 导出CSV

    试样
    编号
    平衡
    时间/ps
    波动/%
    温度 Epotential Ekinetic Enon-bond Etotal
    1# 58.93 3.25 1.56 3.85 4.52 4.11
    2# 74.68 2.89 2.56 4.26 1.57 2.10
    3# 25.95 4.56 4.56 3.73 2.94 1.61
    4# 78.59 1.12 2.76 1.52 4.51 1.52
    5# 85.45 2.59 3.81 1.14 1.52 3.20
    6# 36.58 3.58 4.19 2.81 2.73 2.17
    7# 57.58 1.56 1.25 4.20 2.85 3.96
    8# 85.42 3.20 2.48 1.52 4.22 2.57
    9# 54.20 2.74 4.21 1.23 2.52 1.85
    下载: 导出CSV


    Enon-bond/(kcal·mol–1)

    Ediagonal/(kcal·mol–1)
    Einteraction
    /(kcal·mol–1)
    Etotal
    /(kcal·mol–1)
    Evdw Eelectrostatic Ebond Eangle Etorsion
    1# 84.65 853.99 214.04 371.93 –721.02 53.49 552.18
    2# 85.17 906.80 215.48 398.77 –728.18 63.88 601.15
    3# 86.71 977.26 217.09 412.65 –751.63 75.86 654.46
    4# 97.89 1083.01 218.45 448.12 –753.56 85.58 723.28
    5# 110.28 1205.79 242.31 453.70 –770.93 88.09 828.37
    6# 110.97 1332.96 264.16 536.79 –787.47 89.02 898.72
    7# 122.93 1462.88 268.80 547.69 –792.07 108.50 1002.49
    8# 132.42 2094.95 309.91 689.15 –858.76 127.05 1413.73
    9# 55.29 3377.36 402.88 1026.23 –1028.7 74.86 2171.63
    下载: 导出CSV
    Baidu
  • [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

  • [1] 桑丽霞, 李志康. Au-TiO2光电极界面声子热输运特性的分子动力学模拟. 必威体育下载 , 2024, 73(10): 103105. doi: 10.7498/aps.73.20240026
    [2] 俞葆青, 夏兵, 杨晓砚, 万宝全, 查俊伟. 高压直流电缆聚丙烯绝缘电场调控. 必威体育下载 , 2023, 72(6): 068402. doi: 10.7498/aps.72.20222320
    [3] 秦晓玲, 朱栩量, 曹靖雯, 王浩诚, 张鹏. 冰的氢键振动研究. 必威体育下载 , 2021, 70(14): 146301. doi: 10.7498/aps.70.20210013
    [4] 朱智, 闫韶健, 段铜川, 赵妍, 孙庭钰, 李阳梅. 太赫兹电磁波调控甲烷水合物分解. 必威体育下载 , 2021, 70(24): 248705. doi: 10.7498/aps.70.20211779
    [5] 张泽程, 刘珍, 王孟妮, 张福建, 张忠强. 柱状石墨烯膜反渗透滤盐特性及机理. 必威体育下载 , 2021, 70(9): 098201. doi: 10.7498/aps.70.20201764
    [6] 段铜川, 闫韶健, 赵妍, 孙庭钰, 李阳梅, 朱智. 水的氢键网络动力学与其太赫兹频谱的关系. 必威体育下载 , 2021, 70(24): 248702. doi: 10.7498/aps.70.20211731
    [7] 杨刚, 郑庭, 程启昊, 张会臣. 非牛顿流体剪切稀化特性的分子动力学模拟. 必威体育下载 , 2021, 70(12): 124701. doi: 10.7498/aps.70.20202116
    [8] 张忠强, 于凡顺, 刘珍, 张福建, 程广贵. 氢化多孔石墨烯反渗透特性及机理分析. 必威体育下载 , 2020, 69(9): 098201. doi: 10.7498/aps.69.20191761
    [9] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟. 必威体育下载 , 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [10] 马超, 闵道敏, 李盛涛, 郑旭, 李西育, 闵超, 湛海涯. 聚丙烯/氧化铝纳米电介质的陷阱与直流击穿特性. 必威体育下载 , 2017, 66(6): 067701. doi: 10.7498/aps.66.067701
    [11] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算. 必威体育下载 , 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [12] 张兆慧, 韩奎, 曹娟, 王帆, 杨丽娟. 有机分子超薄膜的结构对摩擦的影响. 必威体育下载 , 2012, 61(2): 028701. doi: 10.7498/aps.61.028701
    [13] 陈俊, 史琳, 王楠, 毕胜山. 基于分子动力学模拟流体输运性质的稳定性分析. 必威体育下载 , 2011, 60(12): 126601. doi: 10.7498/aps.60.126601
    [14] 马颖. 非晶态石英的变电荷分子动力学模拟. 必威体育下载 , 2011, 60(2): 026101. doi: 10.7498/aps.60.026101
    [15] 陈明, 闵锐, 周俊明, 胡浩, 林波, 缪灵, 江建军. 碳纳米胶囊中水分子的分子动力学研究. 必威体育下载 , 2010, 59(7): 5148-5153. doi: 10.7498/aps.59.5148
    [16] 马颖, 陈尚达, 谢国锋. SiC晶界薄膜的变电荷分子动力学模拟. 必威体育下载 , 2009, 58(11): 7792-7796. doi: 10.7498/aps.58.7792
    [17] 张兆慧, 韩 奎, 李海鹏, 唐 刚, 吴玉喜, 王洪涛, 白 磊. Langmuir-Blodgett膜摩擦分子动力学模拟和机理研究. 必威体育下载 , 2008, 57(5): 3160-3165. doi: 10.7498/aps.57.3160
    [18] 张鹏锋, 夏钟福, 邱勋林, 王飞鹏, 吴贤勇. 充电参数对聚丙烯蜂窝膜驻极体压电性的影响. 必威体育下载 , 2006, 55(2): 904-909. doi: 10.7498/aps.55.904
    [19] 王飞鹏, 夏钟福, 裘晓敏, 吕 航, 邱勋林, 沈 军. 压力膨化处理对正极性聚丙烯蜂窝膜的驻极体性质的影响. 必威体育下载 , 2005, 54(9): 4400-4405. doi: 10.7498/aps.54.4400
    [20] 缪江平, 吴宗汉, 孙承休, 孙岳明. 表面等离极化激元对电荷输运影响的自洽场理论研究. 必威体育下载 , 2004, 53(8): 2728-2733. doi: 10.7498/aps.53.2728
计量
  • 文章访问数:  530
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-04
  • 修回日期:  2025-04-07
  • 上网日期:  2025-04-19
  • 刊出日期:  2025-06-20

返回文章
返回
Baidu
map