-
Quantum key distribution (QKD) relies on the fundamental principles of quantum mechanics and can theoretically achieve unconditionally secure communication that is provable by information theory. Quantum random number generators, on the other hand, utilize the inherent randomness of quantum phenomena and are capable of generating a truly random entropy source that is unpredictable, unbiased and unrepeatable. These two technologies are crucial for building highly trustworthy and secure communication systems resistant to quantum attacks. However, their large-scale deployment still faces challenges such as system performance optimization, cost control and scale production. Relying on wafer-level fabrication platforms and micro-nanometer processing, integrated photonics technology integrates the core devices of traditional QKD systems (e.g., light source, modulator, and detector) in a single chip at high density. It significantly improves the miniaturization, operational stability and cost-effectiveness of the system, and enhances the intrinsic security, and becomes a key enabling platform to drive QKD and QRNG from laboratory to engineering applications. In this paper, we systematically review the recent breakthroughs of photonic integrated QKD based on different material platforms (SOI/InP/TFLN/Si3N4) in terms of core metrics, such as transmission distance and key rate, as well as the significant breakthroughs of integrated QRNG in terms of random number generation rate and system integration. Finally, the future development direction of this field is discussed and outlooked from the four dimensions of practical security of QKD systems, on-chip implementation of cutting-edge QKD protocols, practical fully-integrated QKD systems, and synergistic optimization of high performance and high integration of integrated QRNG. [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] -
对比维度 SOI InP TFLN Si3N4 折射率
(1550 nm)~3.48 ~3.2 ~2.2 ~2.0 透明窗口
/μm1.1—8.0 0.9—1.7 0.4—5.0 0.25—6.00 传输损耗 ★★★ ★★ ★★★★ ★★★★★ 工艺
成熟度★★★★★ ★★★ ★★ ★★★ 光源 ★★★ ★★★★★ ★★★ ★ 探测器 ★★★ ★★★★ ★★★ ★★★ 调制器 ★★★ ★★★★ ★★★★★ ★★ 文献 工艺 器件 编码方式 协议 重复频率
/MHz传输损耗
/dB平均速率
/kbps光源 编码 解调 探测 [43] SI × √ × × 偏振编码 BB84 312.5 20a 42.7 [44] Si3N4 √ √ √ √ 时间戳-相位编码 BB84 3350 10 12170 [45] Si3N4/InP × √ √ × 时间戳-相位编码 BB84 1000 9.3 2370 [10] SI √ √ × × 偏振编码 BB84 2500 2.2 115800 [46] SI × √ √ × 偏振编码 BB84 50 18.857 0.24 [47] SI × √ √ × 偏振编码 BB84 50 28.992 0.866 [48] SI √ √ √ × 时间戳-相位编码 BB84 2500 39.5 9.4 [49] TFLN × √ √ × 时间戳-相位编码 BB84 2500 4.1 1.1×104 [50] TFLN × √ √ × 时间戳-相位编码/相位编码 BB84 10 6.43 0.77 文献 工艺 器件 编码方式 协议 重复频率/ MHz 传输损耗/dB 平均速率/kbps 光源 编码 解调 探测 [51] InP/Si3N4 √ × × √ 相位编码 GG02 250 10a 750 [52] SI × × √ × 相位编码 GG02 1000 5.72a 1380 [53] SI × × √ √ 相位编码 GG02 100 4.6 220 [54] InP √ √ × × 相位编码 GG02 16 2.04 78 [55] SI × √ √ √ 相位编码 DM CV-QKD 10000 2a 3.51×105 [56] SI × √ √ √ 相位编码 DM CV-QKD 16000 4a 2.46×105 [57] SI × √ √ √ 偏振编码/相位编码 DM CV-QKD 20000 1.98 1.213×106 文献 工艺 熵源 设备信任 探测 采样方式 生成速率/Mbps [64] SI 真空噪声 测量设备无关 零差探测 FPGA(实时) — [65] InP 自发辐射相位噪声 完全可信 光电探测 示波器(离线) 6110 [66] SI 真空噪声 完全可信 零差探测 示波器(离线) 1×105 [67] SI 真空态涨落 源设备无关 零差探测 示波器(离线) 146.2 [68] SI 光子偏振态 源设备无关 单光子探测 单光子探测器+
时间数字转换器(离线)4.04 [69] SiO2 真空噪声 完全可信 零差探测 FPGA(实时) 5×104 [70] SI/InP 真空噪声 完全可信 零差探测 FPGA(实时) 1.02 [26] InP 真空态涨落 完全可信 光电探测 FPGA(实时) 2×103 [71] SI 真空噪声 源设备无关 零差探测 FPGA(实时) 2×104 [25] SI 光子偏振态 源设备无关 单光子探测 单光子探测器+
时间数字转换器(离线)9.49 [72] SI 真空态涨落 源设备无关 外差探测 示波器(离线) 20212 注: 表中所有基于不同平台集成的QRNG工作均采用了“Toeplitz Hashing”后处理技术. -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84]
计量
- 文章访问数: 313
- PDF下载量: 16
- 被引次数: 0