Bi2Te3-based materials prepared by traditional zone melting often suffer fro m poor mechanical properties. Although powder metallurgy followed by hot ext rusion can effectively enhance mechanical strength, this approach involves a len gthy, multi-step processes including powdering, sintering, and extrusion. Such a complex procedure has hindered the development of polycrystalline Bi2Te3-bas ed materials and their application in micro-thermoelectric devices. In this work, p-type Bi2Te3-based ribbons were first fabricated via melt spinning. Subsequent ly, a series of highly textured, fine-grained p-type Bi2Te3-based bulk materials were prepared by directly tiling these ribbons and consolidating them through Spark Plasma Sintering (SPS). The as-spun ribbons possess a strong texture, al ong with abundant nanostructures and defects. The subsequent consolidation, ac hieved by directly tiling these ribbons and applying Spark Plasma Sintering (SPS) without any pulverization, effectively preserved their intrinsic preferred orie ntation. This resulted in a strong (1 1 0) texture perpendicular to the pressing direction, which is distinct from that obtained via the conventional ball-milling and SPS route. The sample sintered at 743 K exhibited an orientation factor of 0.37, comparable to that of hot-extruded counterparts. Owing to this strong te xture, the sample exhibited superior electrical transport properties along the dire ction parallel to the pressure. A high power factor of 3.79 mW m-1 K-2 was ac hieved at room temperature. Furthermore, grain refinement led to a significant reduction in thermal conductivity. Consequently, a peak ZT value of 1.30 was obtained at 398 K for the sample sintered at 743 K, representing a 46% enhan cement over traditional zone-melted samples. This study provides a rapid and f acile strategy for fabricating highly textured, fine-grained, high-performance Bi2 Te3-based materials, laying a solid foundation for their engineering applications in Micro-thermoelectric devices.