[1] |
Zhang Shi-Jie, Wang Ying-Ming, Wang Qi, Li Chen-Yu, Li Ri.Simulation of dendrite collision behavior based on cellular automata-lattice Boltzmann model. Acta Physica Sinica, 2021, 70(23): 238101.doi:10.7498/aps.70.20211292 |
[2] |
Hu Jia-Yi, Zhang Wen-Huan, Chai Zhen-Hua, Shi Bao-Chang, Wang Yi-Hang.Three-dimensional 12-velocity multiple-relaxation-time lattice Boltzmann model of incompressible flows. Acta Physica Sinica, 2019, 68(23): 234701.doi:10.7498/aps.68.20190984 |
[3] |
Fang Hui, Xue Hua, Tang Qian-Yu, Zhang Qing-Yu, Pan Shi-Yan, Zhu Ming-Fang.Cellular automaton simulation of molten pool migration due to temperature gradient zone melting. Acta Physica Sinica, 2019, 68(4): 048102.doi:10.7498/aps.68.20181587 |
[4] |
Tao Shi, Wang Liang, Guo Zhao-Li.Lattice Boltzmann modeling of microscale oscillating Couette flow. Acta Physica Sinica, 2014, 63(21): 214703.doi:10.7498/aps.63.214703 |
[5] |
He Yu-Bo, Lin Xiao-Yan, Dong Xiao-Liang.Use of lattice Boltzmann method to simulate 2-D partial differential equation. Acta Physica Sinica, 2013, 62(19): 194701.doi:10.7498/aps.62.194701 |
[6] |
Wei Wei, Lu Lu-Yi, Gu Zhao-Lin.Modeling and simulation of electrification of wind-blown-sand two-phase flow. Acta Physica Sinica, 2012, 61(15): 158301.doi:10.7498/aps.61.158301 |
[7] |
Yang Xiao-Kuo, Cai Li, Kang Qiang, Li Zheng-Cao, Chen Xiang-Ye, Zhao Xiao-Hui.Theoretical study and experimentation of magnetic quantum-dot cellular automata corner structure. Acta Physica Sinica, 2012, 61(9): 097503.doi:10.7498/aps.61.097503 |
[8] |
Zhang Liang, Fu Wei-Ji, Zhang Li-Feng, Wu Hai-Yan, Huang Hong.On the evolution of Couette flow energy. Acta Physica Sinica, 2010, 59(3): 1437-1448.doi:10.7498/aps.59.1437 |
[9] |
Yue Hao, Shao Chun-Fu, Duan Long-Mei, Guan Hong-Zhi.Simulation of pedestrian evacuation flow with affected visual field using cellular automata. Acta Physica Sinica, 2010, 59(7): 4499-4507.doi:10.7498/aps.59.4499 |
[10] |
Zhang Li-Sheng, Deng Min-Yi, Kong Ling-Jiang, Liu Mu-Ren, Tang Guo-Ning.The cellular automaton model for the nonlinear waves in the two-dimensional excitable media. Acta Physica Sinica, 2009, 58(7): 4493-4499.doi:10.7498/aps.58.4493 |
[11] |
Huang Feng, Di Hong-Shuang, Wang Guang-Shan.Modelling of solidification microstructure evolution of twin-roll casting magnesium strip using cellular automaton. Acta Physica Sinica, 2009, 58(13): 313-S318.doi:10.7498/aps.58.313 |
[12] |
Yue Hao, Shao Chun-Fu, Yao Zhi-Sheng.Pedestrian evacuation flow simulation based on cellular automata. Acta Physica Sinica, 2009, 58(7): 4523-4530.doi:10.7498/aps.58.4523 |
[13] |
Wu Ke-Fei, Kong Ling-Jiang, Liu Mu-Ren.The study of a cellular automaton NS and WWH mixed model for traffic flow on a two-lane roadway. Acta Physica Sinica, 2006, 55(12): 6275-6280.doi:10.7498/aps.55.6275 |
[14] |
Li Qiang, Li Dian-Zhong, Qian Bai-Nian.Modeling of dendritic growth by means of cellular automaton method. Acta Physica Sinica, 2004, 53(10): 3477-3481.doi:10.7498/aps.53.3477 |
[15] |
Zhou Li-Na, Wang Xin-Bing.A fluid model for the simulation of discharges in microhollow cathode. Acta Physica Sinica, 2004, 53(10): 3440-3446.doi:10.7498/aps.53.3440 |
[16] |
Zhao Ying, Ji Zhong-Zhen, Feng Tao.Simulation of thermal convection in a vertical slot using the lattice Boltzmann model. Acta Physica Sinica, 2004, 53(3): 671-675.doi:10.7498/aps.53.671 |
[17] |
FENG SHI-DE, MICHIHISA TSUTAHARA.SIMULATION OF SHOCK WAVES USING A LATTICE BOLTZMANN EQUATION MODEL. Acta Physica Sinica, 2001, 50(6): 1006-1010.doi:10.7498/aps.50.1006 |
[18] |
FENG SHI-DE, ZHANG QIONG, REN RONG-CAI.SIMULATION OF A FLOW FIELD WITH NONUNIFORM TEMPERATURE BY USING LATTICE BOLTZMANN EQUATION MODEL. Acta Physica Sinica, 2001, 50(7): 1207-1212.doi:10.7498/aps.50.1207 |
[19] |
LI FU-BIN.EQUILIBRIUM AND NONEQUILIBRIUM CORRELATIONS FUNCTIONS OF A FLUID SOLVED BY CELLULAR AUTOMATA APPROACH SIMULATIONS. Acta Physica Sinica, 1992, 41(9): 1448-1451.doi:10.7498/aps.41.1448 |
[20] |
LI FU-BIN.CONSTITUTION OF THE MODEL OF NONEQUILIBRIUM PHASE TRANSITION BY THE CELLULAR AUTOMATA APPROACH. Acta Physica Sinica, 1992, 41(11): 1837-1841.doi:10.7498/aps.41.1837 |