[1] |
Gao Jie, Zhang Min-Cang.Tridiagonal representation with pseudospin symmetry for a noncentral electric dipole and a ring-shaped anharmonic oscillator potential. Acta Physica Sinica, 2016, 65(2): 020301.doi:10.7498/aps.65.020301 |
[2] |
Yu Tao, Zhang Lu, Luo Mao-Kang.The resonant behavior of a linear harmonic oscillator with fluctuating mass. Acta Physica Sinica, 2013, 62(12): 120504.doi:10.7498/aps.62.120504 |
[3] |
Ding Guang-Tao.A study on the first integrals of harmonic oscillators. Acta Physica Sinica, 2013, 62(6): 064502.doi:10.7498/aps.62.064502 |
[4] |
Zhang Min-Cang.Pseudospin symmetry for a noncentral electric dipole ring-shaped potential in the tridiagonal representation. Acta Physica Sinica, 2012, 61(24): 240301.doi:10.7498/aps.61.240301 |
[5] |
Wang Jian-Hui, Xiong Shuang-Quan, He Ji-Zhou, Liu Jiang-Tao.Performance analysis of a quantum heat engine working with a particle in a one-dimensional harmonic trap. Acta Physica Sinica, 2012, 61(8): 080509.doi:10.7498/aps.61.080509 |
[6] |
Xia Jian-Ping, Ren Xue-Zao, Cong Hong-Lu, Wang Xu-Wen, He Shu.Quantum evolution of entanglement property in two-qubit and oscillator coupling system. Acta Physica Sinica, 2012, 61(1): 014208.doi:10.7498/aps.61.014208 |
[7] |
Lu Zhi-Xin, Cao Li.Stochastic resonance of square wave signal in an overdamped harmonic oscillator. Acta Physica Sinica, 2011, 60(11): 110501.doi:10.7498/aps.60.110501 |
[8] |
Zhang Li, Liu Li, Cao Li.Stochastic resonance in an overdamped harmonic oscillator. Acta Physica Sinica, 2010, 59(3): 1494-1498.doi:10.7498/aps.59.1494 |
[9] |
Wang Xiao-Qin, Zhou Li-You, Lu Huai-Xin.Dynamical evolution for time-dependent qscillators. Acta Physica Sinica, 2008, 57(11): 6736-6740.doi:10.7498/aps.57.6736 |
[10] |
Xu Xiu-Wei, Ren Ting-Qi, Liu Shu-Yan, Dong Yong-Mian, Zhao Ji-De.General solution for multi-dimensional coupled and forced quantum oscillator. Acta Physica Sinica, 2006, 55(2): 535-538.doi:10.7498/aps.55.535 |
[11] |
Long Shu-Ming, Ran Qi-Wu, Xiong Xiao-Jun.The space dent of sphere-symmetry harmonic oscillator in ground state. Acta Physica Sinica, 2005, 54(3): 1044-1047.doi:10.7498/aps.54.1044 |
[12] |
Li Wen-Bo.. Acta Physica Sinica, 2002, 51(3): 547-553.doi:10.7498/aps.51.547 |
[13] |
Chen Chang-Yuan, Sun Dong-Sheng, Liu You-Wen, Cheng Tian-Long.. Acta Physica Sinica, 2002, 51(3): 468-473.doi:10.7498/aps.51.468 |
[14] |
LI BO-ZANG, LI LING.RIGOROUS EVOLVING STATES OF EXP-SIN TYPE FOR THE GENERALIZED TIME-DEPENDENT QUANTUM OSCILLATOR WITH A MOVING BOUNDARY. Acta Physica Sinica, 2001, 50(9): 1654-1660.doi:10.7498/aps.50.1654 |
[15] |
LIU DENG-YUN.THE BERRY PHASE OF THE QUANTUM STATE OF A HARMONIC OSCILLATOR WITH TIME-DEPENDENT FREQUENCY AND BOUNDARY CONDITIONS. Acta Physica Sinica, 1998, 47(8): 1233-1240.doi:10.7498/aps.47.1233 |
[16] |
LING RUI-LIANG, FENG JIN-FU.AN EXACT WAVEFUNCTION OF DAMPED HARMONIC OSCILLATOR. Acta Physica Sinica, 1998, 47(12): 1952-1956.doi:10.7498/aps.47.1952 |
[17] |
LONG JUN-YAN.KUSTANNHEIMO -STIEFEI TRANSFORMATION OF BARY-ON STRUCTURE MODEL WITH A FOUR-DIMENSI-ONAL COVARIANT HARMONIC OSCILLATOR. Acta Physica Sinica, 1994, 43(5): 717-724.doi:10.7498/aps.43.717 |
[18] |
R. D. KHAN, ZHANG JIE-LUN, DING SHENG, SHEN WEN-DA.EVOLUTION OF A VELOCITY-DEPENDENT FORCED QUANTUM ANHARMONIC OSCILLATOR. Acta Physica Sinica, 1993, 42(5): 699-704.doi:10.7498/aps.42.699 |
[19] |
CHEN WEI, CHANG ZHE, GUO HAN-YING.CLASSICAL q-DEFORMED HARMONIC OSCILLATORS AND THEIR ? QUANTIZATION. Acta Physica Sinica, 1991, 40(3): 337-344.doi:10.7498/aps.40.337 |
[20] |
PENG HUAN-WU.QUANTUM MECHANICAL TREATMENT OF A DAMPED HARMONIC OSCILLATOR. Acta Physica Sinica, 1980, 29(8): 1084-1089.doi:10.7498/aps.29.1084 |