[1] |
Ma Jun, Wu Xin-Yi, Qin Hui-Xin.Realization of synchronization between hyperchaotic systems by using a scheme of intermittent linear coupling. Acta Physica Sinica, 2013, 62(17): 170502.doi:10.7498/aps.62.170502 |
[2] |
Li Yu-San, Wei Lin-Ling, Yu Miao, Zhang Meng.Chaos synchronization of regular network based on sliding mode control. Acta Physica Sinica, 2012, 61(12): 120504.doi:10.7498/aps.61.120504 |
[3] |
Cao He-Fei, Zhang Ruo-Xun.Parameter modulation digital communication and its circuit implementation using fractional-order chaotic system via a single driving variable. Acta Physica Sinica, 2012, 61(2): 020508.doi:10.7498/aps.61.020508 |
[4] |
Tang Liang-Rui, Fan Bing, Kang Zhong-Miao.A chaos synchronization method based on amplitude. Acta Physica Sinica, 2012, 61(8): 080508.doi:10.7498/aps.61.080508 |
[5] |
Li Jian-Fen, Li Nong, Chen Chang-Xing.Modification of projective synchronization for a class of fractional order chaotic system by using a single driving variable. Acta Physica Sinica, 2010, 59(11): 7644-7649.doi:10.7498/aps.59.7644 |
[6] |
Xue Wei, Guo Yan-Ling, Chen Zeng-Qiang.Analysis of chaos and circuit implementation of a permanent magnet synchronous motor. Acta Physica Sinica, 2009, 58(12): 8146-8151.doi:10.7498/aps.58.8146 |
[7] |
Li Jian-Fen, Li Nong, Liu Yu-Ping, Gan Yi.Linear and nonlinear generalized synchronization of a class of chaotic systems by using a single driving variable. Acta Physica Sinica, 2009, 58(2): 779-784.doi:10.7498/aps.58.779 |
[8] |
Jing Xiao-Dan, Lü Ling.Generalized synchronization of spatiotemporal chaos systems by phase compression. Acta Physica Sinica, 2008, 57(8): 4766-4770.doi:10.7498/aps.57.4766 |
[9] |
Hu Ai-Hua, Xu Zhen-Yuan.Linear generalized synchronization of chaotic systems by using white noise. Acta Physica Sinica, 2007, 56(6): 3132-3136.doi:10.7498/aps.56.3132 |
[10] |
Wu Yu-Xi, Huang Xia, Gao Jian, Zheng Zhi-Gang.Phase synchronization and generalized synchronization in doubly driven chaotic oscillators. Acta Physica Sinica, 2007, 56(7): 3803-3812.doi:10.7498/aps.56.3803 |
[11] |
Wang Xing-Yuan, Liu Ming.Sliding mode control for the synchronization of master-slave chaotic systems with sector nonlinear input. Acta Physica Sinica, 2005, 54(6): 2584-2589.doi:10.7498/aps.54.2584 |
[12] |
Chen Ju-Fang, Zhang Ru-Yuan, Peng Jian-Hua.Experimental study for impulsive synchronization of a discrete chaotic system. Acta Physica Sinica, 2003, 52(7): 1589-1594.doi:10.7498/aps.52.1589 |
[13] |
Cheng Li, Zhang Ru-Yuan, Peng Jian-Hua.A method for synchronizing chaos and hyperchaos by single driving varlable. Acta Physica Sinica, 2003, 52(3): 536-541.doi:10.7498/aps.52.536 |
[14] |
Lai Jian-Wen, Zhou Shi-Ping, Li Guo-Hui, Xu De-Ming.. Acta Physica Sinica, 2001, 50(1): 21-25.doi:10.7498/aps.50.21 |
[15] |
YANG SHI-PING, NIU YHAI-YAN, TIAN GANG, YUAN GUO-YONG, ZHANG SHAN.SYNCHRONIZING CHAOS BY DRIVING PARAMETER. Acta Physica Sinica, 2001, 50(4): 619-623.doi:10.7498/aps.50.619 |
[16] |
GAO JIN-FENG, MA XI-KUI, LUO XIAN-JUE.AN ADAPTIVE APPROACH FOR REALIZING ANY CONTINUOUS TIME SCALAR(HYPER)CHAOTIC SIGN AL SYNCHRONIZATION CONTROL. Acta Physica Sinica, 2000, 49(7): 1235-1240.doi:10.7498/aps.49.1235 |
[17] |
GAO JIN-FENG, LUO XIAN-JUE, MA XI-KUI.A NONLINEAR FEEDBACK APPROACH FOR REALIZING ANY CONTINUOUS TIME SCALAR (HYPER) CHAOTIC SIGNAL SYNCHRONIZATION CONTROL. Acta Physica Sinica, 2000, 49(5): 838-843.doi:10.7498/aps.49.838 |
[18] |
LUO XIAO-SHU, FANG JIN-QING, QU WAN-LI.CONTROLLING HYPERCHAOS THROUGH LENGTHENING TIME OF AUTOCORRELATION OF SIGNAL. Acta Physica Sinica, 1999, 48(4): 589-595.doi:10.7498/aps.48.589 |
[19] |
LIU YU-HUAI, MA JUN, LU YI-QUN.UTILIZATION OF DRIVING SUBSYSTEMS TO CONSTRUCT SYNCHRONIZATION WITH CHAOTIC SIGNALS. Acta Physica Sinica, 1999, 48(1): 10-15.doi:10.7498/aps.48.10 |
[20] |
Cheng Yan-Xiang, Wang Guang-Rui.. Acta Physica Sinica, 1995, 44(9): 1382-1389.doi:10.7498/aps.44.1382 |