[1] |
Wang Yu, Wu Yi-Hao, Li Yi-Pu, Lu Kai-Xiang, Yi Tian-Cheng, Zhang Yun-Bo.Squeezing and evolution of single particle by frequency jumping in two-dimensional rotating harmonic. Acta Physica Sinica, 2024, 73(7): 074202.doi:10.7498/aps.73.20231929 |
[2] |
Qian Jia, Dang Shi-Pei, Zhou Xing, Dan Dan, Wang Zhao-Jun, Zhao Tian-Yu, Liang Yan-Sheng, Yao Bao-Li, Lei Ming.Fast structured illumination three-dimensional color microscopic imaging method based on Hilbert-transform. Acta Physica Sinica, 2020, 69(12): 128701.doi:10.7498/aps.69.20200352 |
[3] |
Zhong Su-Chuan, Yu Tao, Zhang Lu, Ma Hong.Stochastic resonance of an underdamped linear harmonic oscillator with fluctuating mass and fluctuating frequency. Acta Physica Sinica, 2015, 64(2): 020202.doi:10.7498/aps.64.020202 |
[4] |
Ling Rui-Liang, Feng Jin-Fu, Hu Yun.Exact wave function of dual-coupled two-dimensional harmonic oscillators with time-dependent and anisotropic mass and frequency. Acta Physica Sinica, 2010, 59(2): 759-764.doi:10.7498/aps.59.759 |
[5] |
Ling Rui-Liang, Feng Jin-Fu.Exact wave function of the coupled harmonic oscillator with time-dependent mass and frequency. Acta Physica Sinica, 2009, 58(4): 2164-2167.doi:10.7498/aps.58.2164 |
[6] |
Wang Xiao-Qin, Zhou Li-You, Lu Huai-Xin.Dynamical evolution for time-dependent qscillators. Acta Physica Sinica, 2008, 57(11): 6736-6740.doi:10.7498/aps.57.6736 |
[7] |
Long Shu-Ming, Ran Qi-Wu, Xiong Xiao-Jun.The space dent of sphere-symmetry harmonic oscillator in ground state. Acta Physica Sinica, 2005, 54(3): 1044-1047.doi:10.7498/aps.54.1044 |
[8] |
Li Jiang-Fan, Huang Chun-Jia, Jiang Zong-Fu, Huang Zu-Hong.The evolution and two-mode squeezed states of the time-dependent two coupled harmonic oscillators. Acta Physica Sinica, 2005, 54(2): 522-529.doi:10.7498/aps.54.522 |
[9] |
Zheng Yi, Yang Xin-E.Solution of time-dependent harmonic oscillator system using explicit Euler method and discussion of the cyclic initial states. Acta Physica Sinica, 2005, 54(2): 511-516.doi:10.7498/aps.54.511 |
[10] |
Wang Ping, Yang Xin-E, Song Xiao-Hui.Exact solution for a harmonic oscillator with a time-dependent inverse square po tential by path-integral. Acta Physica Sinica, 2003, 52(12): 2957-2960.doi:10.7498/aps.52.2957 |
[11] |
LING RUI-LIANG.PROPAGATOR AND EXACT WAVE FUNCTION OF THE TIME DEPENDENTLY DAMPED HARMONIC OSCILLATOR. Acta Physica Sinica, 2001, 50(8): 1421-1424.doi:10.7498/aps.50.1421 |
[12] |
LI BO-ZANG, LI LING.RIGOROUS EVOLVING STATES OF EXP-SIN TYPE FOR THE GENERALIZED TIME-DEPENDENT QUANTUM OSCILLATOR WITH A MOVING BOUNDARY. Acta Physica Sinica, 2001, 50(9): 1654-1660.doi:10.7498/aps.50.1654 |
[13] |
LI LING, LI BO-ZANG, LIANG JIU-QING.LEWIS-RIESENFELD PHASES AND BERRY PHASES IN THEQUANTUM SYSTEM OF TIME-DEPENDENT HARMONICOSCILLATOR WITH A MOVING BOUNDARY. Acta Physica Sinica, 2001, 50(11): 2077-2082.doi:10.7498/aps.50.2077 |
[14] |
DENG WEN-JI.PROBABILITY CURRENTS AND CONSERVATION OF PROBABILITY IN HILBERT SPACE. Acta Physica Sinica, 2001, 50(8): 1425-1428.doi:10.7498/aps.50.1425 |
[15] |
XU XIU-WEI, LIU SHENG-DIAN, REN TING-QI, ZHANG YONG-DE.EVOLUTION OPERATOR AND WAVE FUNCTION OF A TIME-DEPENDENT OSCILLATOR. Acta Physica Sinica, 1999, 48(9): 1601-1604.doi:10.7498/aps.48.1601 |
[16] |
ZHANG RUN-DONG, YAN FENG-LI, LI BO-ZANG.HAMILTONIAN OPERATORS CONSTRUCTED FROM TWO KINDS OF FINITE-DEPTH QUANTUM POTENTIAL WELLS WITH TIME-DEPENDENT BOUNDARY CONDITIONS AND THEIR COMPLEX BERRY PHASES. Acta Physica Sinica, 1998, 47(10): 1585-1599.doi:10.7498/aps.47.1585 |
[17] |
DANG LAN-FEN.TIME EVOLUTION AND SQUEEZED STATES OF A TIME-DEPEDENT OSCILLATOR SYSTEM. Acta Physica Sinica, 1998, 47(7): 1071-1077.doi:10.7498/aps.47.1071 |
[18] |
LIU DENG-YUN.THE BERRY PHASE OF THE QUANTUM STATE OF A HARMONIC OSCILLATOR WITH TIME-DEPENDENT FREQUENCY AND BOUNDARY CONDITIONS. Acta Physica Sinica, 1998, 47(8): 1233-1240.doi:10.7498/aps.47.1233 |
[19] |
LIU DENG-YUN.TIME DEPENDENT BOUNDARY CONDITIONS AND BERRY PHASE. Acta Physica Sinica, 1993, 42(5): 705-710.doi:10.7498/aps.42.705 |
[20] |
GAO XIAO-CHUN, XU JIN-BO, QIAN TIE-ZHENG.THE EXACT SOLUTION AND BERRY'S PHASE FOR THE GENERALIZED TIME-DEPENDENT HARMONIC OSCILLATOR. Acta Physica Sinica, 1991, 40(1): 25-32.doi:10.7498/aps.40.25 |