[1] |
Yuan Xiao-Juan.Effects of trimodal random magnetic field on spin dynamics of quantum Ising chain. Acta Physica Sinica, 2023, 72(8): 087501.doi:10.7498/aps.72.20230046 |
[2] |
Yuan Xiao-Juan, Wang Hui, Zhao Bang-Yu, Zhao Jing-Fen, Ming Jing, Geng Yan-Lei, Zhang Kai-Yu.Effects of random longitudinal magnetic field on dynamics of one-dimensional quantum Ising model. Acta Physica Sinica, 2021, 70(19): 197501.doi:10.7498/aps.70.20210631 |
[3] |
Liu Xiao-Hang, Wang Yi-Ning, Qu Zi-Min, Di Zeng-Ru.Opinion formation model with co-evolution of individual behavior and social environment. Acta Physica Sinica, 2019, 68(11): 118902.doi:10.7498/aps.68.20182254 |
[4] |
Yang Bo, Fan Min, Liu Wen-Qi, Chen Xiao-Song.Phase transition properties for the spatial public goods game with self-questioning mechanism. Acta Physica Sinica, 2017, 66(19): 196401.doi:10.7498/aps.66.196401 |
[5] |
Luo Zhi, Yang Guan-Qiong, Di Zeng-Ru.Opinion formation on the social networks with geographic structure. Acta Physica Sinica, 2012, 61(19): 190509.doi:10.7498/aps.61.190509 |
[6] |
Shao Yuan-Zhi, Zhong Wei-Rong, Lu Hua-Quan, Lei Shi-Fu.Nonequilibrium dynamic phase transition in a kinetic Ising spin system. Acta Physica Sinica, 2006, 55(4): 2057-2063.doi:10.7498/aps.55.2057 |
[7] |
Sun Chun-Feng.The partition function and correlation functions of the Ising model on a diamond fractal lattices. Acta Physica Sinica, 2005, 54(8): 3768-3773.doi:10.7498/aps.54.3768 |
[8] |
Shao Yuan-Zhi, Zhong Wei-Rong, Lin Guang-Ming.Nonequilibrium dynamic phase transition of an Ising spin system driven by various oscillating field. Acta Physica Sinica, 2004, 53(9): 3165-3170.doi:10.7498/aps.53.3165 |
[9] |
Shao Yuan-Zhi, Zhong Wei-Rong, Lin Guang-Ming, Li Jian-Can.Stochastic resonance of an Ising spin system driven by stochastic external field. Acta Physica Sinica, 2004, 53(9): 3157-3164.doi:10.7498/aps.53.3157 |
[10] |
Shao Yuan-Zhi, Zhong Wei-Rong, Lin Guang-Ming.Hysteretic scaling and dynamical phase transition of three-dimension X-Y Model. Acta Physica Sinica, 2003, 52(9): 2309-2313.doi:10.7498/aps.52.2309 |
[11] |
WU MU-YING, YE AI-JUN, LI ZI-BING, ZENG WEN-GUANG.SHORT-TIME CRITICAL DYNAMIC PROCESS OF TWO-LAYER ISING MODEL. Acta Physica Sinica, 2000, 49(6): 1168-1170.doi:10.7498/aps.49.1168 |
[12] |
ZHENG RUI-LUN, ZHAO FU-CHUAN, XIONG GUO-MING.AN IMPROVEMENT IN SELF-CONSISTENT CLUSTER METHOD FOR DETERMINING THE CRITICAL POINT IN ISING SPIN SYSTEM. Acta Physica Sinica, 1997, 46(4): 724-731.doi:10.7498/aps.46.724 |
[13] |
JI DA-REN, ZHANG JIAN-BO.MONTE CARLO SIMULATIONS OF THE ISING MODEL ON THREE-DIMENSIONAL RANDOM LATTICE USING THE CLUSTER ALGORITHM. Acta Physica Sinica, 1993, 42(11): 1741-1746.doi:10.7498/aps.42.1741 |
[14] |
ZHANG GUO-MIN, YANG CHUAN-ZHANG.MONTE CARLO STUDY OF THE ORDER OF PHASE TRANSITION OF A MULTISPIN INTERACTIONS ISING MODEL. Acta Physica Sinica, 1993, 42(10): 1680-1683.doi:10.7498/aps.42.1680 |
[15] |
Teng Bao-hua.GREEN'S FUNCTION APPROACH TO 3-DIMENSIONAL ISING MODEL. Acta Physica Sinica, 1991, 40(5): 826-832.doi:10.7498/aps.40.826 |
[16] |
CHEN SHI-GANG.FRACTAL STRUCTURE AT THE CRITICAL POINT OF CONTINUOUS PHASE TRANSFORMATION. Acta Physica Sinica, 1991, 40(4): 584-587.doi:10.7498/aps.40.584 |
[17] |
OU FA, DENG WEN-JI.PHASE TRANSITIONS AT CRITICAL POINTS IN OPTICAL BISTAB1LITY. Acta Physica Sinica, 1990, 39(6): 90-97.doi:10.7498/aps.39.90 |
[18] |
LUAN CHANG-FU.THE UPPER LIMIT OF CRITICAL TEMPERATURE OF N DIMENSIONAL ISING MODEL. Acta Physica Sinica, 1989, 38(3): 497-501.doi:10.7498/aps.38.497 |
[19] |
SHI HE, HAO BAI-LIN.CLOSED-FORM APPROXIMATION FOR THE 3-DIMENSIONAL ISING MODEL (Ⅳ)——THE APPROXIMATE INTERPOLATION FORMULA FOR THE PARTITION FUNCTION. Acta Physica Sinica, 1981, 30(9): 1234-1241.doi:10.7498/aps.30.1234 |
[20] |
SHI HE, HAO BAI-LIN.A CLOSED-FORM APPROXIMATION FOR THE 3-DIMENSIONAL ISING MODEL (Ⅱ)——LIMITATIONS OF THE Q-APPROXIMATION. Acta Physica Sinica, 1980, 29(12): 1564-1569.doi:10.7498/aps.29.1564 |