[1] |
Zhang Da-Jun.Bilinearization-reduction approach to integrable systems. Acta Physica Sinica, 2023, 72(10): 100203.doi:10.7498/aps.72.20230063 |
[2] |
Zhang Da-Jun.Discrete integrable systems: Multidimensional consistency. Acta Physica Sinica, 2020, 69(1): 010202.doi:10.7498/aps.69.20191647 |
[3] |
Song Cai-Qin, Zhu Zuo-Nong.An integrable reverse space-time nonlocal Sasa-Satsuma equation. Acta Physica Sinica, 2020, 69(1): 010204.doi:10.7498/aps.69.20191887 |
[4] |
Wei Han-Yu, Xia Tie-Cheng.Nonlinear integrable couplings of super Kaup-Newell hierarchy and its super Hamiltonian structures. Acta Physica Sinica, 2013, 62(12): 120202.doi:10.7498/aps.62.120202 |
[5] |
Yin Jiu-Li, Fan Yu-Qin, Zhang Juan, Tian Li-Xin.Some new integrable nonlinear dispersive equations and their solitary wave solutions. Acta Physica Sinica, 2011, 60(8): 080201.doi:10.7498/aps.60.080201 |
[6] |
Yu Ya-Xuan, Wang Qi, Zhao Xue-Qin, Zhi Hong-Yan, Zhang Hong-Qing.A direct algebraic method to obtain solitary solutions of nonlinear differential-difference equations. Acta Physica Sinica, 2005, 54(9): 3992-3994.doi:10.7498/aps.54.3992 |
[7] |
Tian Xiao-Dong, Yue Rui-Hong.Integrability of the generalized multi-component Fermi quantum derivative nonlin ear Schrdinger model. Acta Physica Sinica, 2005, 54(4): 1485-1489.doi:10.7498/aps.54.1485 |
[8] |
Pu Li-Chun, Zhang Xue-Feng, Xu Li-Jun.Exact solution of the nonlinear “loop” soliton equation. Acta Physica Sinica, 2005, 54(9): 4186-4191.doi:10.7498/aps.54.4186 |
[9] |
Li Qi-Liang, Zhu Hai-Dong, Tang Xiang-Hong, Li Cheng-Jia, Wang Xiao-Jun, Lin Li-Bin.Integrability aspects of solitons’ coupled equation in multi-wavelength system. Acta Physica Sinica, 2004, 53(6): 1623-1628.doi:10.7498/aps.53.1623 |
[10] |
Zhang Yu-Feng, Guo Fu-Kui.An extension of Lie algebra and a related integrable system. Acta Physica Sinica, 2004, 53(5): 1276-1279.doi:10.7498/aps.53.1276 |
[11] |
Cai Hao, Chen Shi-Rong, Huang Nian-Ning.General procedure to formulate Hamiltonian theory of the completely integrable n onlinear equations and its application to the sine-Gordon equation. Acta Physica Sinica, 2003, 52(9): 2206-2212.doi:10.7498/aps.52.2206 |
[12] |
Zhang Yu-Feng, Yan Qing-You.A type of expanding integrable system for NLS-mKdV hierarchy. Acta Physica Sinica, 2003, 52(9): 2109-2113.doi:10.7498/aps.52.2109 |
[13] |
Zhang Yu-Feng, Yan Qing-You, Zhang Hong-Qing.A family of S-mKdV hierarchy of equations and its expanding integrable models. Acta Physica Sinica, 2003, 52(1): 5-11.doi:10.7498/aps.52.5 |
[14] |
Ruan Hang-Yu, Chen Yi-Xin.HIGHER DIMENSIONAL PAINLEVé INTEGRABLE MODELSWITH REAL PHYSICAL SIGNIFICATION. Acta Physica Sinica, 2001, 50(4): 577-585.doi:10.7498/aps.50.577 |
[15] |
RUAN HANG-YU.STUDY OF SOLITONS INTERACTION IN INTEGRABLE MODELS. Acta Physica Sinica, 2001, 50(3): 369-376.doi:10.7498/aps.50.369 |
[16] |
Lin Ji, Wang Ke-Lin.. Acta Physica Sinica, 2001, 50(1): 13-20.doi:10.7498/aps.50.13 |
[17] |
YAN ZHEN-YA, ZHANG HONG-QING.NEW LAX INTEGRABLE HIERARCHY OF EVOLUTION EQUATIONS AND ITS INFINITE-DIMENSIONAL BI-HAMILTONIAN STRUCTURE. Acta Physica Sinica, 2001, 50(7): 1232-1236.doi:10.7498/aps.50.1232 |
[18] |
MA TAO, NI ZHI-XIANG.TWO NEW CLASSES OF CONDITIONALLY EXACTLY SOLVABLE POTENTIAL AND THEIR NONLINEAR SPECTRUM-GENERATING ALGEBRAS. Acta Physica Sinica, 1999, 48(6): 987-991.doi:10.7498/aps.48.987 |
[19] |
LIN JI, YU JUN, LOU SEN-YUE.(3+1)-DIMENSIONAL MODELS WITH INFINITELY DIMENSIONAL VIRASORO TYPE SYMMETRY ALGBRA. Acta Physica Sinica, 1996, 45(7): 1073-1080.doi:10.7498/aps.45.1073 |
[20] |
HAN PING, LOU SEN-YUE.SYMMETRY ALGEBRA OF THE KAUP-KUPERSHMIDT EQUATION. Acta Physica Sinica, 1994, 43(7): 1041-1049.doi:10.7498/aps.43.1041 |