[1] |
Mei Ying, Tan Guan-Zheng, Liu Zhen-Tao, Wu He.Chaotic time series prediction based on brain emotional learning model and self-adaptive genetic algorithm. Acta Physica Sinica, 2018, 67(8): 080502.doi:10.7498/aps.67.20172104 |
[2] |
Tian Zhong-Da, Gao Xian-Wen, Shi Tong.Combination kernel function least squares support vector machine for chaotic time series prediction. Acta Physica Sinica, 2014, 63(16): 160508.doi:10.7498/aps.63.160508 |
[3] |
Zhao Yong-Ping, Zhang Li-Yan, Li De-Cai, Wang Li-Feng, Jiang Hong-Zhang.Chaotic time series prediction using filtering window based least squares support vector regression. Acta Physica Sinica, 2013, 62(12): 120511.doi:10.7498/aps.62.120511 |
[4] |
Li Jun, Zhang You-Peng.Single-step and multiple-step prediction of chaotic time series using Gaussian process model. Acta Physica Sinica, 2011, 60(7): 070513.doi:10.7498/aps.60.070513 |
[5] |
Zhang Chun-Tao, Ma Qian-Li, Peng Hong.Chaotic time series prediction based on information entropy optimized parameters of phase space reconstruction. Acta Physica Sinica, 2010, 59(11): 7623-7629.doi:10.7498/aps.59.7623 |
[6] |
Du Jie, Cao Yi-Jia, Liu Zhi-Jian, Xu Li-Zhong, Jiang Quan-Yuan, Guo Chuang-Xin, Lu Jin-Gui.Local higher-order Volterra filter multi-step prediction model of chaotic time series. Acta Physica Sinica, 2009, 58(9): 5997-6005.doi:10.7498/aps.58.5997 |
[7] |
Liu Fu-Cai, Zhang Yan-Liu, Chen Chao.Prediction of chaotic time series based on robust fuzzy clustering. Acta Physica Sinica, 2008, 57(5): 2784-2790.doi:10.7498/aps.57.2784 |
[8] |
He Tao, Zhou Zheng-Ou.Prediction of chaotic time series based on fractal self-affinity. Acta Physica Sinica, 2007, 56(2): 693-700.doi:10.7498/aps.56.693 |
[9] |
Meng Qing-Fang, Zhang Qiang, Mu Wen-Ying.A novel multi-step adaptive prediction method for chaotic time series. Acta Physica Sinica, 2006, 55(4): 1666-1671.doi:10.7498/aps.55.1666 |
[10] |
Liu Fu-Cai, Sun Li-Ping, Liang Xiao-Ming.Prediction of chaotic time series based on hierarchical fuzzy-clustering. Acta Physica Sinica, 2006, 55(7): 3302-3306.doi:10.7498/aps.55.3302 |
[11] |
Cui Wan-Zhao, Zhu Chang-Chun, Bao Wen-Xing, Liu Jun-Hua.Prediction of the chaotic time series using support vector machines for fuzzy rule-based modeling. Acta Physica Sinica, 2005, 54(7): 3009-3018.doi:10.7498/aps.54.3009 |
[12] |
Ye Mei-Ying, Wang Xiao-Dong, Zhang Hao-Ran.Chaotic time series forecasting using online least squares support vector machine regression. Acta Physica Sinica, 2005, 54(6): 2568-2573.doi:10.7498/aps.54.2568 |
[13] |
Cui Wan-Zhao, Zhu Chang-Chun, Bao Wen-Xing, Liu Jun-Hua.Prediction of the chaotic time series using support vector machines. Acta Physica Sinica, 2004, 53(10): 3303-3310.doi:10.7498/aps.53.3303 |
[14] |
Wang Hong-Wei, Ma Guang-Fu.Prediction of chaotic time series based on fuzzy model. Acta Physica Sinica, 2004, 53(10): 3293-3297.doi:10.7498/aps.53.3293 |
[15] |
Tan Wen, Wang Yao-Nan, Zhou Shao-Wu, Liu Zu-Run.Prediction of the chaotic time series using neuro-fuzzy networks. Acta Physica Sinica, 2003, 52(4): 795-801.doi:10.7498/aps.52.795 |
[16] |
Gan Jian-Chao, Xiao Xian-Ci.Nonlinear adaptive multi-step-prediction of chaotic time series based on points in the neighborhood. Acta Physica Sinica, 2003, 52(12): 2995-3001.doi:10.7498/aps.52.2995 |
[17] |
Gan Jian-Chao, Xiao Xian-Ci.Adaptive predict-filter of chaotic time series constructed Based on the neighbou rhood in the reconstructed phase space(Ⅰ)linear adaptive filter. Acta Physica Sinica, 2003, 52(5): 1096-1101.doi:10.7498/aps.52.1096 |
[18] |
Wei Biao-Lin, Luo Xiao-Shu, Wang Bing-Hong, Quan Hong-Jun, Guo Wei, Fu Jin-Jie.. Acta Physica Sinica, 2002, 51(10): 2205-2210.doi:10.7498/aps.51.2205 |
[19] |
ZHANG JIA-SHU, XIAO XIAN-CI.A REDUCED PARAMETER SECOND-ORDER VOLTERRA FILTER WITH APPLICATION TO NONLINEAR ADAPTIVE PREDICTION OF CHAOTIC TIME SERIES. Acta Physica Sinica, 2001, 50(7): 1248-1254.doi:10.7498/aps.50.1248 |
[20] |
ZHANG JIA-SHU, XIAO XIAN-CI.NONLINEAR ADAPTIVE PREDICTION OF CHAOTIC TIME SERIES WITH A REDUCED PARAMETER NO NLINEAR ADAPTIVE FILTER. Acta Physica Sinica, 2000, 49(12): 2333-2339.doi:10.7498/aps.49.2333 |