[1] |
Yang Chao, Chen Shu.Topological invariant in quench dynamics. Acta Physica Sinica, 2019, 68(22): 220304.doi:10.7498/aps.68.20191410 |
[2] |
Song Wen-Hua, Wang Ning, Gao Da-Zhi, Wang Hao-Zhong, Qu Ke.Concept of waveguide invariant spectrum and algorithm for its extraction. Acta Physica Sinica, 2017, 66(11): 114301.doi:10.7498/aps.66.114301 |
[3] |
Lü Jun-Wei, Chi Cheng, Yu Zhen-Tao, Bi Bo, Song Qing-Shan.Research on the asphericity error elimination of the invariant of magnetic gradient tensor. Acta Physica Sinica, 2015, 64(19): 190701.doi:10.7498/aps.64.190701 |
[4] |
Shan Chuan-Jia.Berry phase and quantum phase transition in spin chain system with three-site interaction. Acta Physica Sinica, 2012, 61(22): 220302.doi:10.7498/aps.61.220302 |
[5] |
Rao Huang-Yun, Liu Yi-Bao, Jiang Yan-Yan, Guo Li-Ping, Wang Zi-Sheng.Geometric quantum phase for three-level mixed state. Acta Physica Sinica, 2012, 61(2): 020302.doi:10.7498/aps.61.020302 |
[6] |
Zheng Li-Ming, Liu Song-Hao, Wang Fa-Qiang.Geometric phase evolution of atom under non-Markovian environment. Acta Physica Sinica, 2009, 58(4): 2430-2434.doi:10.7498/aps.58.2430 |
[7] |
Mei Feng-Xiang, Cai Jian-Le.Integral invariants of a generalized Birkhoff system. Acta Physica Sinica, 2008, 57(8): 4657-4659.doi:10.7498/aps.57.4657 |
[8] |
Luo Shao-Kai.A new type of non-Noether adiabatic invariants, i.e. adiabatic invariants of Lut zky type, for Lagrangian systems. Acta Physica Sinica, 2007, 56(10): 5580-5584.doi:10.7498/aps.56.5580 |
[9] |
Zheng Ying-Hong, Chen Tong, Wang Ping, Chang Zhe.Properties of geometric phase under Galilean transformation. Acta Physica Sinica, 2007, 56(11): 6199-6203.doi:10.7498/aps.56.6199 |
[10] |
Zhang Yi.A new type of adiabatic invariants for Birkhoffian system. Acta Physica Sinica, 2006, 55(8): 3833-3837.doi:10.7498/aps.55.3833 |
[11] |
Ma Zhong-Qi, Xu Bo-Wei.Exact quantization rule and the invariant. Acta Physica Sinica, 2006, 55(4): 1571-1579.doi:10.7498/aps.55.1571 |
[12] |
Zhang Yi.. Acta Physica Sinica, 2002, 51(11): 2417-2422.doi:10.7498/aps.51.2417 |
[13] |
LI LING, LI BO-ZANG, LIANG JIU-QING.LEWIS-RIESENFELD PHASES AND BERRY PHASES IN THEQUANTUM SYSTEM OF TIME-DEPENDENT HARMONICOSCILLATOR WITH A MOVING BOUNDARY. Acta Physica Sinica, 2001, 50(11): 2077-2082.doi:10.7498/aps.50.2077 |
[14] |
FU JIAN, GAO XIAO-CHUN, XU JING-BO, ZOU XU-BO.INVARIANT-RELATED UNITARY TRANSFORMATION METHOD AND EXACT SOLUTIONS FOR THE QUANTUM DIRAC FIELD IN A TIME-DEPENDENT SPATIALLY HOMOGENEOUS ELECTRIC FIELD. Acta Physica Sinica, 1999, 48(6): 1011-1022.doi:10.7498/aps.48.1011 |
[15] |
LI BO-ZANG, ZHANG DE-GANG, WU JIAN-HUA, YAN FENG-LI.BLOCH THEOREM FOR THE EVOLUTION OF STATES IN THE CYCLIC QUANTUM SYSTEMS AND THE UNIFICATION OF RESONANT GEOMETRIC PHASES. Acta Physica Sinica, 1997, 46(2): 227-237.doi:10.7498/aps.46.227 |
[16] |
LI BO-ZANG, ZHANG LING-YUN, ZHANG XIANG-DONG.NOTES ON THE QUANTUM INVARIANT AND ON THE-RELATION BETWEEN IT AND QUANTUM PHASE. Acta Physica Sinica, 1997, 46(11): 2080-2094.doi:10.7498/aps.46.2080 |
[17] |
LAI YUN-ZHONG, LIANG JIU-QING.TIME EVOLUTION OF A QUANTUM SYSTEM WITH HAMILTONIAN CONSISTING OF TIME-DEPENDENT LINEAR COMBINATION OF SU(l, 1)AND SU(2) GENERATORS AND THE HERMITIAN INVARIANT OPERATOR. Acta Physica Sinica, 1996, 45(5): 738-746.doi:10.7498/aps.45.738 |
[18] |
GAO XIAO-CHUN, GAO JUN, FU JIAN.QUANTUM INVARIANT THEORY AND THE MOTION OF AN ION IN A COMBINED TRAP. Acta Physica Sinica, 1996, 45(6): 912-923.doi:10.7498/aps.45.912 |
[19] |
ZHANG YAO-ZHONG.QUANTUM GROUP Uq(SU( 1,1)),UNIVERSAL R MATRIX AND CASIMIR INVARIANT. Acta Physica Sinica, 1994, 43(2): 169-174.doi:10.7498/aps.43.169 |
[20] |
SUN HONG-LIN, ZHANG GANG, GUO DONG-YAO.TWO-WAVELENGTH NEIGHBORHOOD PRINCIPLE OF TWO-PHASE STRUCTURE INVARIANTS. Acta Physica Sinica, 1989, 38(5): 824-828.doi:10.7498/aps.38.824 |