[1] |
Li Qing-Du, Guo Jian-Li.Algorithm for calculating the Lyapunov exponents of switching system and its application. Acta Physica Sinica, 2014, 63(10): 100501.doi:10.7498/aps.63.100501 |
[2] |
Hou Feng-Zhen, Dai Jia-Fei, Liu Xin-Feng, Huang Xiao-Lin.Phase synchrony in the cerebral infarction electroencephalogram based on the degree of network-links. Acta Physica Sinica, 2014, 63(4): 040506.doi:10.7498/aps.63.040506 |
[3] |
Zhang Fang-Fang, Liu Shu-Tang, Yu Wei-Yong.Characteristics of time-delay complex Lorenz chaotic system and its self-synchronization of time delay. Acta Physica Sinica, 2013, 62(22): 220505.doi:10.7498/aps.62.220505 |
[4] |
Zhou Xiao-Yong, Qiao Xiao-Hua, Zhu Lei, Liu Su-Fen.A class of associated chaotic system, its switching and internal synchronization mechanism. Acta Physica Sinica, 2013, 62(19): 190504.doi:10.7498/aps.62.190504 |
[5] |
Wu Hao, Hou Wei, Wang Wen-Xiang, Yan Peng-Cheng.Try to use Lyapunov exponent to discuss the abrupt climate change and its precursory signals. Acta Physica Sinica, 2013, 62(12): 129204.doi:10.7498/aps.62.129204 |
[6] |
Zang Hong-Yan, Fan Xiu-Bin, Min Le-Quan, Han Dan-Dan.Research of Lyapunov exponent of S-boxes. Acta Physica Sinica, 2012, 61(20): 200508.doi:10.7498/aps.61.200508 |
[7] |
Lü Ling, Li Gang, Shang Jin-Yu, Shen Na, Zhang Xin, Liu Shuang, Zhu Jia-Bo.The synchronization of spatiotemporal chaos of nearest-neighbor coupled network. Acta Physica Sinica, 2010, 59(9): 5966-5971.doi:10.7498/aps.59.5966 |
[8] |
Lu Jing, Zhang Rong, Xu Zhen-Yuan.Phase synchronization between two adjacent nodes in amplitude coupled dynamical networks. Acta Physica Sinica, 2010, 59(9): 5949-5953.doi:10.7498/aps.59.5949 |
[9] |
Li Yan, Lü Ling, Luan Ling.Lag synchronization of spatiotemporal chaos in a weighted network with ring connection. Acta Physica Sinica, 2009, 58(7): 4463-4468.doi:10.7498/aps.58.4463 |
[10] |
Yu Si-Yao, Guo Shu-Xu, Gao Feng-Li.Calculation of the Lyapunov exponent for low frequency noise in semiconductor laser and chaos indentification. Acta Physica Sinica, 2009, 58(8): 5214-5217.doi:10.7498/aps.58.5214 |
[11] |
Zhang Xiao-Dan, Liu Xiang, Zhao Pin-Dong.Methods for calculating the main-axis Lyapunov exponents of a type of chaotic systems with delay. Acta Physica Sinica, 2009, 58(7): 4415-4420.doi:10.7498/aps.58.4415 |
[12] |
He Si-Hua, Yang Shao-Qing, Shi Ai-Guo, Li Tian-Wei.Detection of ship targets on the sea surface based on Lyapunov exponents of image block. Acta Physica Sinica, 2009, 58(2): 794-801.doi:10.7498/aps.58.794 |
[13] |
Zhang Yong, Guan Wei.Predication of multivariable chaotic time series based on maximal Lyapunov exponent. Acta Physica Sinica, 2009, 58(2): 756-763.doi:10.7498/aps.58.756 |
[14] |
Yang Yong-Feng, Wu Ya-Feng, Ren Xing-Min, Qin Wei-Yang, Zhi Xi-Zhe, Qiu Yan.The largest Lyapunov prediction method for the end issue of empirical mode decomposition. Acta Physica Sinica, 2009, 58(6): 3742-3746.doi:10.7498/aps.58.3742 |
[15] |
Liu Yong.Phase synchronization of coupling systems. Acta Physica Sinica, 2009, 58(2): 749-755.doi:10.7498/aps.58.749 |
[16] |
Bao Gang, Narenmandula, Tubuxin, Eredencang.Dynamic behavior of complete synchronization of coupled chaotic oscillators. Acta Physica Sinica, 2007, 56(4): 1971-1974.doi:10.7498/aps.56.1971 |
[17] |
Meng Juan, Wang Xing-Yuan.Phase synchronization of chaotic systems based on nonlinear observers. Acta Physica Sinica, 2007, 56(9): 5142-5148.doi:10.7498/aps.56.5142 |
[18] |
Wu Yu-Xi, Huang Xia, Gao Jian, Zheng Zhi-Gang.Phase synchronization and generalized synchronization in doubly driven chaotic oscillators. Acta Physica Sinica, 2007, 56(7): 3803-3812.doi:10.7498/aps.56.3803 |
[19] |
Hao Jian-Hong, Li Wei.Phase synchronization of R?ssler in two coupled harmonic oscillators. Acta Physica Sinica, 2005, 54(8): 3491-3496.doi:10.7498/aps.54.3491 |
[20] |
ZHENG ZHI-GANG, HU GANG, ZHOU CHANG-SONG, HU BAM-BI.PHASE SYNCHRONIZATION IN COUPLED CHAOTIC SYSTEMS:TRANSITIONS FROM HIGH-TO LOW-D IMENSIONAL CHAOS. Acta Physica Sinica, 2000, 49(12): 2320-2327.doi:10.7498/aps.49.2320 |