[1] |
Ge Wei-Kuan, Xue Yun, Lou Zhi-Mei.Generalized gradient representation of holonomic mechanical systems. Acta Physica Sinica, 2014, 63(11): 110202.doi:10.7498/aps.63.110202 |
[2] |
Song Duan, Liu Chang, Guo Yong-Xin.The integral variational principles for embedded variation identity of high-order nonholonomic constrained systems. Acta Physica Sinica, 2013, 62(9): 094501.doi:10.7498/aps.62.094501 |
[3] |
Wang Xiao-Xiao, Zhang Mei-Ling, Han Yue-Lin, Jia Li-Qun.Mei symmetry and Mei conserved quantity of Nielsen equation in a dynamical system of the relative motion with nonholonomic constraint of Chetaev's type. Acta Physica Sinica, 2012, 61(20): 200203.doi:10.7498/aps.61.200203 |
[4] |
Xie Jia-Fang, Pang Shuo, Zou Jie-Tao, Li Guo-Fu.The Borkhoffian expression of Boltzmann-Hamel equation of nonholonomic system and its generalized symplectic geometric algorithm. Acta Physica Sinica, 2012, 61(23): 230201.doi:10.7498/aps.61.230201 |
[5] |
Dong Wen-Shan, Huang Bao-Xin.Lie symmetries and Noether conserved quantities of generalized nonholonomic mechanical systems. Acta Physica Sinica, 2010, 59(1): 1-6.doi:10.7498/aps.59.1 |
[6] |
Li Yuan-Cheng, Xia Li-Li, Wang Xiao-Ming.Unified symmetry of mechanico-electrical systems with nonholonomic constraints of non-Chetaev’s type. Acta Physica Sinica, 2009, 58(10): 6732-6736.doi:10.7498/aps.58.6732 |
[7] |
Zhao Zhe, Guo Yong-Xin, Liu Chang, Liu Shi-Xing.Differential equations of motion for constrained systems with respect to three kinds of nonholonomic variations. Acta Physica Sinica, 2008, 57(4): 1998-2005.doi:10.7498/aps.57.1998 |
[8] |
Guo Yong-Xin, Zhao Zhe, Liu Shi-Xing, Liu Chang.On d-δ commutation relation of constrained differential systems. Acta Physica Sinica, 2008, 57(3): 1301-1306.doi:10.7498/aps.57.1301 |
[9] |
Liu Shi-Xing, Guo Yong-Xin, Liu Chang.A special nonholonomic mechanical system calculated by symplectic method. Acta Physica Sinica, 2008, 57(3): 1311-1315.doi:10.7498/aps.57.1311 |
[10] |
Jia Li-Qun, Zhang Yao-Yu, Zheng Shi-Wang.Hojman conserved quantities for systems with non-Chetaev nonholonomic constraints in the event space. Acta Physica Sinica, 2007, 56(2): 649-654.doi:10.7498/aps.56.649 |
[11] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu.Mei conserved quantities for systems with unilateral non-Chetaev nonholonomic constraints in the event space. Acta Physica Sinica, 2007, 56(11): 6188-6193.doi:10.7498/aps.56.6188 |
[12] |
Zhang Yi.Non-Noether conserved quantities for systems with unilateral non-Chetaev nonholonomic constraints. Acta Physica Sinica, 2006, 55(2): 504-510.doi:10.7498/aps.55.504 |
[13] |
Guo Yong-Xin, Zhao Zhe, Liu Shi-Xing, Wang Yong, Zhu Na, Han Xiao-Jing.Conditions for Chetaev dynamics to be equivalent to vakonomic dynamics in nonholonomic systems. Acta Physica Sinica, 2006, 55(8): 3838-3844.doi:10.7498/aps.55.3838 |
[14] |
Zhang Xiang-Wu.Higher order Lagrange equations of holonomic potential mechanical system. Acta Physica Sinica, 2005, 54(10): 4483-4487.doi:10.7498/aps.54.4483 |
[15] |
Zhang Yi, Mei Feng-Xiang.Effects of non-conservative forces and nonholonomic constraints on Noether symmetries of a Lagrange system. Acta Physica Sinica, 2004, 53(3): 661-668.doi:10.7498/aps.53.661 |
[16] |
Zhang Yi, Ge Wei-Kuan.Integrating factors and conservation laws for non-holonomic dynamical systems. Acta Physica Sinica, 2003, 52(10): 2363-2367.doi:10.7498/aps.52.2363 |
[17] |
Zhang Yi.Effects of non-conservative forces and nonholonomic constraints on Lie symmetrie s of a Hamiltonian system. Acta Physica Sinica, 2003, 52(6): 1326-1331.doi:10.7498/aps.52.1326 |
[18] |
Li Yuan-Cheng, Zhang Yi, Liang Jing-Hui.. Acta Physica Sinica, 2002, 51(10): 2186-2190.doi:10.7498/aps.51.2186 |
[19] |
QIAO YONG-FEN, ZHAO SHU-HONG.EQUATIONS OF MOTION OF VARIABLE MASS NONHOLONOMIC DYNAMICAL SYSTEMS IN POINCARé-CHETAEV VARIABLES. Acta Physica Sinica, 2001, 50(5): 805-810.doi:10.7498/aps.50.805 |
[20] |
QIAO YONG-FEN, LI REN-JIE, MENG JUN.LINDEL?F'S EQUATIONS OF NONHOLONOMIC ROTATIONAL RELATIVISTIC SYSTEMS. Acta Physica Sinica, 2001, 50(9): 1637-1642.doi:10.7498/aps.50.1637 |