[1] |
Chen Da-Wei, Sun Hai-Quan, Wang Pei, Yu Xi-Jun, Ma Dong-Jun.Numerical investigation on the influence of gas-particle two-way coupling to the shock fluid in the two-dimensional Lagrangian framework. Acta Physica Sinica, 2016, 65(8): 084703.doi:10.7498/aps.65.084703 |
[2] |
Wang Jian-An.Adaptive generalized synchronization between two different complex networks with time-varying delay coupling. Acta Physica Sinica, 2012, 61(2): 020509.doi:10.7498/aps.61.020509 |
[3] |
Liu Lei, Fei Jian-Fang, Zhang Li-Biao, Huang Xiao-Gang, Cheng Xiao-Ping.New parameterization of wave-current interaction used in a two-way coupled model under typhoon conditions. Acta Physica Sinica, 2012, 61(5): 059201.doi:10.7498/aps.61.059201 |
[4] |
Zhang Chun-Tao, Ma Qian-Li, Peng Hong, Jiang You-Yi.Multivariate chaotic time series phase space reconstruction based on extending dimension by conditional entropy. Acta Physica Sinica, 2011, 60(2): 020508.doi:10.7498/aps.60.020508 |
[5] |
Chen Ju-Fang, Tian Xiao-Jian, Shan Jiang-Dong.Experimental study of generalized synchronization of a time-delay chaotic system. Acta Physica Sinica, 2010, 59(4): 2281-2288.doi:10.7498/aps.59.2281 |
[6] |
Li Xiao-Juan, Xu Zhen-Yuan, Xie Qing-Chun, Wang Bing.Generalized synchronization of two different unidirectional coupled Lorenz systems. Acta Physica Sinica, 2010, 59(3): 1532-1539.doi:10.7498/aps.59.1532 |
[7] |
Liu Fu-Cai, Zang Xiu-Feng, Song Jia-Qiu.Anti-synchronism of the bidirectional coupled chaotic system. Acta Physica Sinica, 2009, 58(6): 3765-3771.doi:10.7498/aps.58.3765 |
[8] |
Li Jian-Fen, Li Nong, Liu Yu-Ping, Gan Yi.Linear and nonlinear generalized synchronization of a class of chaotic systems by using a single driving variable. Acta Physica Sinica, 2009, 58(2): 779-784.doi:10.7498/aps.58.779 |
[9] |
Wu Zhong-Qiang, Kuang Yu.Generalized synchronization control of multi-scroll chaotic systems. Acta Physica Sinica, 2009, 58(10): 6823-6827.doi:10.7498/aps.58.6823 |
[10] |
Jing Xiao-Dan, Lü Ling.Generalized synchronization of spatiotemporal chaos systems by phase compression. Acta Physica Sinica, 2008, 57(8): 4766-4770.doi:10.7498/aps.57.4766 |
[11] |
Wang Xing-Yuan, Meng Juan.Linear and nonlinear generalized synchronization of autonomous chaotic systems. Acta Physica Sinica, 2008, 57(2): 726-730.doi:10.7498/aps.57.726 |
[12] |
Qin Wei-Yang, Wang Hong-Jin, Gao Hang-Shan.Generalized synchronization by coupling of restoring force and determination of parameters in vibration systems. Acta Physica Sinica, 2008, 57(1): 42-45.doi:10.7498/aps.57.42 |
[13] |
Yang Dong-Sheng, Zhang Hua-Guang, Li Ai-Ping, Meng Zi-Yi.Generalized synchronization of two non-identical chaotic systems based on fuzzy model. Acta Physica Sinica, 2007, 56(6): 3121-3126.doi:10.7498/aps.56.3121 |
[14] |
Hu Ai-Hua, Xu Zhen-Yuan.Linear generalized synchronization of chaotic systems by using white noise. Acta Physica Sinica, 2007, 56(6): 3132-3136.doi:10.7498/aps.56.3132 |
[15] |
Wang Xing-Yuan, Meng Juan.Generalized synchronization of hyperchaos systems. Acta Physica Sinica, 2007, 56(11): 6288-6293.doi:10.7498/aps.56.6288 |
[16] |
Wu Yu-Xi, Huang Xia, Gao Jian, Zheng Zhi-Gang.Phase synchronization and generalized synchronization in doubly driven chaotic oscillators. Acta Physica Sinica, 2007, 56(7): 3803-3812.doi:10.7498/aps.56.3803 |
[17] |
Li Fang, Hu Ai-Hua, Xu Zhen-Yuan.Generalized synchronization of two non-identical systems. Acta Physica Sinica, 2006, 55(2): 590-597.doi:10.7498/aps.55.590 |
[18] |
Feng Guo-Lin, Hou Wei, Dong Wen-Jie.A technique for distinguishing dynamical species in the temperature time series of Yangtze River delta. Acta Physica Sinica, 2006, 55(2): 962-968.doi:10.7498/aps.55.962 |
[19] |
Xiao Fang-Hong, Yan Gui-Rong, Han Yu-Hang.Information theory approach to determine embedding parameters for phase space reconstruction of chaotic time series. Acta Physica Sinica, 2005, 54(2): 550-556.doi:10.7498/aps.54.550 |
[20] |
Li Guo-Hui.Analytical design of the observer-based chaotic generalized synchronization. Acta Physica Sinica, 2004, 53(4): 999-1002.doi:10.7498/aps.53.999 |