[1] |
Zhang Duan, Shi Jia-Qin, Sun Ying, Yang Xu-Hua, Ye Lei.Lorenz chaotic system generated from Shimizu-Morioka system or Finance system: Differential geometric approach. Acta Physica Sinica, 2019, 68(24): 240502.doi:10.7498/aps.68.20190919 |
[2] |
Zhang Wen-Chao, Tan Si-Chao, Gao Pu-Zhen.Chaotic forecasting of natural circulation flow instabilities under rolling motion based on lyapunov exponents. Acta Physica Sinica, 2013, 62(6): 060502.doi:10.7498/aps.62.060502 |
[3] |
Hu Wen, Li Jun-Ping, Zhang Gong, Liu Wen-Bo, Zhao Guang-Hao.The chaotic self-FM system and its FM code coupled synchronization. Acta Physica Sinica, 2012, 61(1): 010504.doi:10.7498/aps.61.010504 |
[4] |
Yao Tian-Liang, Liu Hai-Feng, Xu Jian-Liang, Li Wei-Feng.The largest Lyapunov exponent and the turbulent fluctuation of the time series from air turbulent jets. Acta Physica Sinica, 2012, 61(23): 234704.doi:10.7498/aps.61.234704 |
[5] |
Yao Tian-Liang, Liu Hai-Feng, Xu Jian-Liang, Li Wei-Feng.Noise-level estimation of noisy chaotic time series based on the invariant of the largest Lyapunov exponent. Acta Physica Sinica, 2012, 61(6): 060503.doi:10.7498/aps.61.060503 |
[6] |
Zhang Rong, Xu Zhen-Yuan, Yang Yong-Qing.An example of realizing "order+order=chaos" via synchronization. Acta Physica Sinica, 2011, 60(1): 010515.doi:10.7498/aps.60.010515 |
[7] |
Wang Rui, Yang Hong.Fractional order chaotic system control based on feedback and multiple least square support vector machines. Acta Physica Sinica, 2011, 60(7): 070508.doi:10.7498/aps.60.070508 |
[8] |
Yan Sen-Lin.Optoelectronic or all-optical logic gates using chaotic semiconductor lasers using mutual coupling-feedback. Acta Physica Sinica, 2011, 60(5): 050509.doi:10.7498/aps.60.050509 |
[9] |
Li Chun-Biao, Hu Wen.Synchronization methods and properties of the improved chaotic system with constant Lyapunov exponent spectrum. Acta Physica Sinica, 2010, 59(2): 801-815.doi:10.7498/aps.59.801 |
[10] |
Han Min, Niu Zhi-Qiang, Han Bing.A new approach to synchronization between two different chaotic systems with parametric perturbation. Acta Physica Sinica, 2008, 57(11): 6824-6829.doi:10.7498/aps.57.6824 |
[11] |
Kong Ling-Qin, Wang An-Bang, Wang Hai-Hong, Wang Yun-Cai.Dynamics of semiconductor laser with optical feedback: Evolution from low-frequency fluctuations to chaos. Acta Physica Sinica, 2008, 57(4): 2266-2272.doi:10.7498/aps.57.2266 |
[12] |
Yao Li-Na, Gao Jin-Feng, Liao Ni-Huan.Synchronization of a class of chaotic systems using nonlinear observers. Acta Physica Sinica, 2006, 55(1): 35-41.doi:10.7498/aps.55.35 |
[13] |
Yan Sen-Lin, Wang Sheng-Qian.Theoretical study of cascade synchronization in chaotic lasers and chaotic repeater. Acta Physica Sinica, 2006, 55(4): 1687-1695.doi:10.7498/aps.55.1687 |
[14] |
Sang Xin-Zhu, Yu Chong-Xiu, Wang Kui-Ru.Experimental investigation on wavelength-tunable chaos generation and synchronization. Acta Physica Sinica, 2006, 55(11): 5728-5732.doi:10.7498/aps.55.5728 |
[15] |
Yan Sen-Lin.Studies on chaotic multiple-quantum-well laser synchronization via controlling phase and its application in secure communication using external chaos phase shift keying modulation. Acta Physica Sinica, 2005, 54(3): 1098-1104.doi:10.7498/aps.54.1098 |
[16] |
Yu Hong-Jie, Liu Yan-Zhu.Synchronization of symmetrically nonlinear-coupled chaotic systems. Acta Physica Sinica, 2005, 54(7): 3029-3033.doi:10.7498/aps.54.3029 |
[17] |
Yan Sen-Lin, Chi Ze-Ying, Chen Wen-Jian, Wang Ze-Nong.Synchronization and decoding of chaotic lasers and their optimization. Acta Physica Sinica, 2004, 53(6): 1704-1709.doi:10.7498/aps.53.1704 |
[18] |
Tao Chao-Hai, Lu Jun-An, Lv Jin-Hu.. Acta Physica Sinica, 2002, 51(7): 1497-1501.doi:10.7498/aps.51.1497 |
[19] |
ZHANG JIA-SHU, XIAO XIAN-CI.CHAOTIC SYNCHRONIZATION SECURE COMMUNICATIONS BASED ON THE EXTENDED CHAOTIC MAPS SWITCH. Acta Physica Sinica, 2001, 50(11): 2121-2125.doi:10.7498/aps.50.2121 |
[20] |
YANG SHI-PING, NIU YHAI-YAN, TIAN GANG, YUAN GUO-YONG, ZHANG SHAN.SYNCHRONIZING CHAOS BY DRIVING PARAMETER. Acta Physica Sinica, 2001, 50(4): 619-623.doi:10.7498/aps.50.619 |