[1] |
Zhang Yi.Mei’s symmetry theorems for non-migrated Birkhoffian systems on a time scale. Acta Physica Sinica, 2021, 70(24): 244501.doi:10.7498/aps.70.20210372 |
[2] |
Zou Dan-Dan, Yang Wei-Hong.Dynamically accessible variations for two-fluid plasma model. Acta Physica Sinica, 2014, 63(3): 030401.doi:10.7498/aps.63.030401 |
[3] |
Zhang Xin-You, L. J. Li, Huang Y. C..Euler-Lagrange equation for general n-order character functional and unification of quantitative causal principle, principle of relativity and general Newton’s laws. Acta Physica Sinica, 2014, 63(19): 190301.doi:10.7498/aps.63.190301 |
[4] |
Ge Wei-Kuan, Zhang Yi, Lou Zhi-Mei.Infinitesimal canonical transformation and integral for a generalized Birkhoff system. Acta Physica Sinica, 2012, 61(14): 140204.doi:10.7498/aps.61.140204 |
[5] |
Zhou Xian-Chun, Lin Wan-Tao, Lin Yi-Hua, Yao Jing-Sun, Mo Jia-Qi.A method of solving a class of disturbed Lorenz system. Acta Physica Sinica, 2011, 60(11): 110207.doi:10.7498/aps.60.110207 |
[6] |
Wu Zhao-Chun.Variational principle and its boundary and additional boundary conditions for inverse shape design problem of heat conduction. Acta Physica Sinica, 2010, 59(9): 6326-6330.doi:10.7498/aps.59.6326 |
[7] |
Ding Guang-Tao.Effects of gauge transformations on symmetries of Birkhoffian system. Acta Physica Sinica, 2009, 58(11): 7431-7435.doi:10.7498/aps.58.7431 |
[8] |
Ge Wei-Kuan, Mei Feng-Xiang.Time-integral theorems for generalized Birkhoff system. Acta Physica Sinica, 2009, 58(2): 699-702.doi:10.7498/aps.58.699 |
[9] |
Zhang Yi.Noether’s theory for Birkhoffian systems in the event space. Acta Physica Sinica, 2008, 57(5): 2643-2648.doi:10.7498/aps.57.2643 |
[10] |
Zhang Yi.Parametric equations and its first integrals for Birkhoffian systems in the event space. Acta Physica Sinica, 2008, 57(5): 2649-2653.doi:10.7498/aps.57.2649 |
[11] |
Zhang Yi.A new type of adiabatic invariants for Birkhoffian system. Acta Physica Sinica, 2006, 55(8): 3833-3837.doi:10.7498/aps.55.3833 |
[12] |
Zheng Shi-Wang, Jia Li-Qun.Local energy integral of Birkhoffian systems. Acta Physica Sinica, 2006, 55(11): 5590-5593.doi:10.7498/aps.55.5590 |
[13] |
Huang Yong-Chang, Li Xi-Guo.Unification of different integral variational principles. Acta Physica Sinica, 2005, 54(8): 3473-3479.doi:10.7498/aps.54.3473 |
[14] |
Zhang Yi.Geometric foundations of Hojman theorem\=for Birkhoffian systems. Acta Physica Sinica, 2004, 53(12): 4026-4028.doi:10.7498/aps.53.4026 |
[15] |
Zhang Yi, Fan Cun-Xin, Ge Wei-Kuan.A new type of conserved quantities for Birkhoffian systems*. Acta Physica Sinica, 2004, 53(11): 3644-3647.doi:10.7498/aps.53.3644 |
[16] |
Fu Jing-Li, Chen Li-Qun, Xue Yun, Luo Shao-Kai.Stability of the equilibrium state in relativistic Birkhoff systems*. Acta Physica Sinica, 2002, 51(12): 2683-2689.doi:10.7498/aps.51.2683 |
[17] |
Zhang Yi.. Acta Physica Sinica, 2002, 51(3): 461-464.doi:10.7498/aps.51.461 |
[18] |
Luo Shao-Kai, Lu Yi-Bing, Zhou Qiang, Wang Ying-De, Oyang Shi.. Acta Physica Sinica, 2002, 51(9): 1913-1917.doi:10.7498/aps.51.1913 |
[19] |
FU JING-LI, CHEN LI-QUN, LUO SHAO-KAI, CHEN XIANG-WEI, WANG XIN-MIN.STUDY ON DYNAMICS OF RELATIVISTIC BIRKHOFF SYSTEMS. Acta Physica Sinica, 2001, 50(12): 2289-2295.doi:10.7498/aps.50.2289 |
[20] |
LUO SHAO-KAI, FU JING-LI, CHEN XIANG-WEI.BASIC THEORY OF RELATIVISTIC BIRKHOFFIAN DYNAMICS OF ROTATIONAL SYSTEM. Acta Physica Sinica, 2001, 50(3): 383-389.doi:10.7498/aps.50.383 |