[1] |
Yan Yu-Wei, Jiang Yuan, Yang Song-Qing, Yu Rong-Bin, Hong Cheng.Network failure model based on time series. Acta Physica Sinica, 2022, 71(8): 088901.doi:10.7498/aps.71.20212106 |
[2] |
Li Jun, Li Da-Chao.Wind power time series prediction using optimized kernel extreme learning machine method. Acta Physica Sinica, 2016, 65(13): 130501.doi:10.7498/aps.65.130501 |
[3] |
Wei De-Zhi, Chen Fu-Ji, Zheng Xiao-Xue.Internet public opinion chaotic prediction based on chaos theory and the improved radial basis function in neural networks. Acta Physica Sinica, 2015, 64(11): 110503.doi:10.7498/aps.64.110503 |
[4] |
Tian Zhong-Da, Li Shu-Jiang, Wang Yan-Hong, Gao Xian-Wen.Chaotic characteristics analysis and prediction for short-term wind speed time series. Acta Physica Sinica, 2015, 64(3): 030506.doi:10.7498/aps.64.030506 |
[5] |
Hou Feng-Zhen, Huang Xiao-Lin, Zhuang Jian-Jun, Huo Cheng-Yu, Ning Xin-Bao.Multi-scale strategy and data surrogating test: two elements for the detection of time irreversibility in heart rate variability. Acta Physica Sinica, 2012, 61(22): 220507.doi:10.7498/aps.61.220507 |
[6] |
Yao Tian-Liang, Liu Hai-Feng, Xu Jian-Liang, Li Wei-Feng.Noise-level estimation of noisy chaotic time series based on the invariant of the largest Lyapunov exponent. Acta Physica Sinica, 2012, 61(6): 060503.doi:10.7498/aps.61.060503 |
[7] |
Wu Jian-Jun, Xu Shang-Yi, Sun Hui-Jun.Detrended fluctuation analysis of time series in mixed traffic flow. Acta Physica Sinica, 2011, 60(1): 019502.doi:10.7498/aps.60.019502 |
[8] |
Xiu Chun-Bo, Xu Meng.Multi-step prediction method for time series based on chaotic operator network. Acta Physica Sinica, 2010, 59(11): 7650-7656.doi:10.7498/aps.59.7650 |
[9] |
Dong Zhao, Li Xiang.The study of network motifs induced from discrete time series. Acta Physica Sinica, 2010, 59(3): 1600-1607.doi:10.7498/aps.59.1600 |
[10] |
Du Jie, Cao Yi-Jia, Liu Zhi-Jian, Xu Li-Zhong, Jiang Quan-Yuan, Guo Chuang-Xin, Lu Jin-Gui.Local higher-order Volterra filter multi-step prediction model of chaotic time series. Acta Physica Sinica, 2009, 58(9): 5997-6005.doi:10.7498/aps.58.5997 |
[11] |
Liu Jin-Hai, Zhang Hua-Guang, Feng Jian.Investigation of chaotic behavior for press time series of oil pipeline. Acta Physica Sinica, 2008, 57(11): 6868-6877.doi:10.7498/aps.57.6868 |
[12] |
Yang Yong-Feng, Ren Xing-Min, Qin Wei-Yang, Wu Ya-Feng, Zhi Xi-Zhe.Prediction of chaotic time series based on EMD method. Acta Physica Sinica, 2008, 57(10): 6139-6144.doi:10.7498/aps.57.6139 |
[13] |
Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da.Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica, 2008, 57(10): 6120-6131.doi:10.7498/aps.57.6120 |
[14] |
Jiang Ke-Yu, Cai Zhi-Ming, Lu Zhen-Bo.A test method for weak nonlinearity in time series. Acta Physica Sinica, 2008, 57(3): 1471-1476.doi:10.7498/aps.57.1471 |
[15] |
Yan Hua, Wei Ping, Xiao Xian-Ci.An adaptive approach based on Bernstein polynomial to predict chaotic time series. Acta Physica Sinica, 2007, 56(9): 5111-5118.doi:10.7498/aps.56.5111 |
[16] |
Song Ai-Jun, Han Lei.Study of nonlinear identification of time series of vibration on transducer in ultrasonic bonding system. Acta Physica Sinica, 2007, 56(7): 3820-3826.doi:10.7498/aps.56.3820 |
[17] |
Ren Ren, Xu Jin, Zhu Shi-Hua.Prediction of chaotic time sequence using least squares support vector domain. Acta Physica Sinica, 2006, 55(2): 555-563.doi:10.7498/aps.55.555 |
[18] |
Lei Min, Meng Guang, Feng Zheng-Jin.Detecting the nonlinearity for time series sampled from continuous dynamic systems. Acta Physica Sinica, 2005, 54(3): 1059-1063.doi:10.7498/aps.54.1059 |
[19] |
LIU YAO-ZONG, WEN XI-SEN, HU NIAO-QING.SURROGATE DATA TEST FOR THE LINEAR NON-GAUSSIAN TIME SERIES WITH NON-MINIMUM PHASE. Acta Physica Sinica, 2001, 50(4): 633-637.doi:10.7498/aps.50.633 |
[20] |
LIU YAO-ZONG, WEN XI-SEN, HU NIAO-QING.A NEW METHOD OF SURROGATE DATA TEST FOR LINEAR NON-GAUSSIAN TIME SERIES. Acta Physica Sinica, 2001, 50(7): 1241-1247.doi:10.7498/aps.50.1241 |