[1] |
Xu Chao, Li Yuan-Cheng.Noether-Lie symmetry and conserved quantities of Nielsen equations for a singular variable mass nonholonomic system with unilateral constraints. Acta Physica Sinica, 2013, 62(17): 171101.doi:10.7498/aps.62.171101 |
[2] |
Xu Chao, Li Yuan-Cheng.Lie-Mei symmetry and conserved quantities of Nielsen equations for a singular nonholonomic system of Chetaev'type. Acta Physica Sinica, 2013, 62(12): 120201.doi:10.7498/aps.62.120201 |
[3] |
Han Yue-Lin, Sun Xian-Ting, Zhang Yao-Yu, Jia Li-Qun.Conformal invariance and conserved quantity of Mei symmetry for Appell equations in holonomic system. Acta Physica Sinica, 2013, 62(16): 160201.doi:10.7498/aps.62.160201 |
[4] |
Wang Xiao-Xiao, Sun Xian-Ting, Zhang Mei-Ling, Xie Yin-Li, Jia Li-Qun.Noether symmetry and Noether conserved quantity of Nielsen equation in a dynamical system of the relative motion with nonholonomic constraint of Chetaev's type. Acta Physica Sinica, 2012, 61(6): 064501.doi:10.7498/aps.61.064501 |
[5] |
Sun Xian-Ting, Han Yue-Lin, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun.A type of new conserved quantity of Mei symmetry for Appell equations in a holonomic system. Acta Physica Sinica, 2012, 61(20): 200204.doi:10.7498/aps.61.200204 |
[6] |
Cai Jian-Le, Shi Sheng-Shui.Conformal invariance and conserved quantity of Mei symmetry for the nonholonomic system of Chetaev's type. Acta Physica Sinica, 2012, 61(3): 030201.doi:10.7498/aps.61.030201 |
[7] |
Wang Xiao-Xiao, Zhang Mei-Ling, Han Yue-Lin, Jia Li-Qun.Mei symmetry and Mei conserved quantity of Nielsen equation in a dynamical system of the relative motion with nonholonomic constraint of Chetaev's type. Acta Physica Sinica, 2012, 61(20): 200203.doi:10.7498/aps.61.200203 |
[8] |
Xie Yin-Li, Jia Li-Qun, Yang Xin-Fang.Lie symmetry and Hojman conserved quantity of Nielsen equation in a dynamical system of the relative motion. Acta Physica Sinica, 2011, 60(3): 030201.doi:10.7498/aps.60.030201 |
[9] |
Jia Li-Qun, Sun Xian-Ting, Zhang Mei-Ling, Wang Xiao-Xiao, Xie Yin-Li.A type of new conserved quantity of Mei symmetry for Nielsen equations. Acta Physica Sinica, 2011, 60(8): 084501.doi:10.7498/aps.60.084501 |
[10] |
Jiang Wen-An, Luo Shao-Kai.Mei symmetry leading to Mei conserved quantity of generalized Hamiltonian system. Acta Physica Sinica, 2011, 60(6): 060201.doi:10.7498/aps.60.060201 |
[11] |
Luo Shao-Kai, Jia Li-Qun, Xie Yin-Li.Mei conserved quantity deduced from Mei symmetry of Appell equation in a dynamical system of relative motion. Acta Physica Sinica, 2011, 60(4): 040201.doi:10.7498/aps.60.040201 |
[12] |
Yang Xin-Fang, Sun Xian-Ting, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun.Mei symmetry and Mei conserved quantity of Appell equations for nonholonomic systems of Chetaevs type with variable mass. Acta Physica Sinica, 2011, 60(11): 111101.doi:10.7498/aps.60.111101 |
[13] |
Zheng Shi-Wang, Xie Jia-Fang, Chen Xiang-Wei, Du Xue-Lian.Another kind of conserved quantity induced directly from Mei symmetry of Tzénoff equations for holonomic systems. Acta Physica Sinica, 2010, 59(8): 5209-5212.doi:10.7498/aps.59.5209 |
[14] |
Jia Li-Qun, Zhang Yao-Yu, Yang Xin-Fang, Cui Jin-Chao, Xie Yin-Li.Type Ⅲ structural equation and Mei conserved quantity of Mei symmetry for a Lagrangian system. Acta Physica Sinica, 2010, 59(5): 2939-2941.doi:10.7498/aps.59.2939 |
[15] |
Li Yuan-Cheng, Wang Xiao-Ming, Xia Li-Li.Unified symmetry and conserved quantities of Nielsen equation for a holonomic mechanical system. Acta Physica Sinica, 2010, 59(5): 2935-2938.doi:10.7498/aps.59.2935 |
[16] |
Jia Li-Qun, Cui Jin-Chao, Luo Shao-Kai, Zhang Yao-Yu.Mei symmetry and Mei conserved quantity of Nielsen equations for nonholonomic systems of unilateral non-Chetaev’s type in the event space. Acta Physica Sinica, 2009, 58(4): 2141-2146.doi:10.7498/aps.58.2141 |
[17] |
Hu Chu-Le.Lie symmetries and Hojman conserved quantities of one kind of differential equations of motion of nonholonomic systems. Acta Physica Sinica, 2007, 56(7): 3675-3677.doi:10.7498/aps.56.3675 |
[18] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu.Mei conserved quantities for systems with unilateral non-Chetaev nonholonomic constraints in the event space. Acta Physica Sinica, 2007, 56(11): 6188-6193.doi:10.7498/aps.56.6188 |
[19] |
Zheng Shi-Wang, Jia Li-Qun.Mei symmetry and conserved quantity of Tzénoff equations for nonholonomic systems. Acta Physica Sinica, 2007, 56(2): 661-665.doi:10.7498/aps.56.661 |
[20] |
Jia Li-Qun, Zheng Shi-Wang, Zhang Yao-Yu.Mei symmetry and Mei conserved quantity of nonholonomic systems of non-Chetaev’s type in event space. Acta Physica Sinica, 2007, 56(10): 5575-5579.doi:10.7498/aps.56.5575 |