| [1] |
Xu Zi-Fei, Miao Wei-Pao, Li Chun, Jin Jiang-Tao, Li Shu-Jun.Nonlinear feature extraction and chaos analysis of flow field. Acta Physica Sinica, 2020, 69(24): 249501.doi:10.7498/aps.69.20200625 |
| [2] |
Li Shuang, Li Qian, Li Jiao-Rui.Mechanism for the coexistence phenomenon of random phase suppressing chaos and stochastic resonance in Duffing system. Acta Physica Sinica, 2015, 64(10): 100501.doi:10.7498/aps.64.100501 |
| [3] |
Zhang Yan-Hui, Shen Zhi-Peng, Cai Xiang-Ji, Xu Xiu-Lan, Gao Song.Fractal dimensions and escape rates in the two-dimensional Hénon-Heiles potential and its deformation form. Acta Physica Sinica, 2015, 64(23): 230501.doi:10.7498/aps.64.230501 |
| [4] |
Li Xian-Rui, Zhu Yan-Li.Analysis of information entropy of DC-DC converter. Acta Physica Sinica, 2014, 63(23): 238401.doi:10.7498/aps.63.238401 |
| [5] |
Chen Yun-Long, Wu Xin.Application of force gradient symplectic integrators to the circular restricted three-body problem. Acta Physica Sinica, 2013, 62(14): 140501.doi:10.7498/aps.62.140501 |
| [6] |
Wang Guang-Yi, Yuan Fang.Cascade chaos and its dynamic characteristics. Acta Physica Sinica, 2013, 62(2): 020506.doi:10.7498/aps.62.020506 |
| [7] |
Yang Qin-Nan, Zhang Yan-Hui, Cai Xiang-Ji, Jiang Guo-Hui, Xu Xue-You.Chaotic behaviors and fractal self-similar analysis of particles transport properties in RIKEN mesoscopic devices. Acta Physica Sinica, 2013, 62(8): 080505.doi:10.7498/aps.62.080505 |
| [8] |
Yao Tian-Liang, Liu Hai-Feng, Xu Jian-Liang, Li Wei-Feng.Noise-level estimation of noisy chaotic time series based on the invariant of the largest Lyapunov exponent. Acta Physica Sinica, 2012, 61(6): 060503.doi:10.7498/aps.61.060503 |
| [9] |
Li He, Yang Zhou, Zhang Yi-Min, Wen Bang-Chun.Methodology of estimating the embedding dimension in chaos time series based on the prediction performance of radial basis function neural networks. Acta Physica Sinica, 2011, 60(7): 070512.doi:10.7498/aps.60.070512 |
| [10] |
Niu Chao, Li Xi-Hai, Liu Dai-Zhi.Chaotic dynamic characteristics of Z component in geomagnetic variation field. Acta Physica Sinica, 2010, 59(5): 3077-3087.doi:10.7498/aps.59.3077 |
| [11] |
Xu Zhe, Liu Chong-Xin, Yang Tao.Study on a new chaotic system with analysis and circuit experiment. Acta Physica Sinica, 2010, 59(1): 131-139.doi:10.7498/aps.59.131 |
| [12] |
Tang Liang-Rui, Li Jing, Fan Bing, Zhai Ming-Yue.A new three-dimensional chaotic system and its circuit simulation. Acta Physica Sinica, 2009, 58(2): 785-793.doi:10.7498/aps.58.785 |
| [13] |
Zhang Xiao-Dan, Liu Xiang, Zhao Pin-Dong.Methods for calculating the main-axis Lyapunov exponents of a type of chaotic systems with delay. Acta Physica Sinica, 2009, 58(7): 4415-4420.doi:10.7498/aps.58.4415 |
| [14] |
Yu Si-Yao, Guo Shu-Xu, Gao Feng-Li.Calculation of the Lyapunov exponent for low frequency noise in semiconductor laser and chaos indentification. Acta Physica Sinica, 2009, 58(8): 5214-5217.doi:10.7498/aps.58.5214 |
| [15] |
Zhang Yong, Guan Wei.Predication of multivariable chaotic time series based on maximal Lyapunov exponent. Acta Physica Sinica, 2009, 58(2): 756-763.doi:10.7498/aps.58.756 |
| [16] |
Liu Yang-Zheng, Jiang Chang-Sheng, Lin Chang-Sheng, Sun Han.Four-dimensional switchable hyperchaotic system. Acta Physica Sinica, 2007, 56(9): 5131-5135.doi:10.7498/aps.56.5131 |
| [17] |
Sheng Li-Yuan, Sun Ke-Hui, Li Chuan-Bing.Study of a discrete chaotic system based on tangent-delay for elliptic reflecting cavity and its properties. Acta Physica Sinica, 2004, 53(9): 2871-2876.doi:10.7498/aps.53.2871 |
| [18] |
Gan Jian-Chao, Xiao Xian-Ci.Nonlinear adaptive multi-step-prediction of chaotic time series based on points in the neighborhood. Acta Physica Sinica, 2003, 52(12): 2995-3001.doi:10.7498/aps.52.2995 |
| [19] |
ZHANG JIA-SHU, XIAO XIAN-CI.NONLINEAR ADAPTIVE PREDICTION OF CHAOTIC TIME SERIES WITH A REDUCED PARAMETER NO NLINEAR ADAPTIVE FILTER. Acta Physica Sinica, 2000, 49(12): 2333-2339.doi:10.7498/aps.49.2333 |
| [20] |
LI GUO-HUI, ZHOU SHI-PING, XU DE-MING, LAI JIAN-WEN.AN OCCASIONAL LINEAR FEEDBACK APPROACH TO CONTROL CHAOS. Acta Physica Sinica, 2000, 49(11): 2123-2128.doi:10.7498/aps.49.2123 |