[1] |
Zhang Fang, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun.Conformal invariance and conserved quantity of Mei symmetry for Appell equation in a holonomic system in relative motion. Acta Physica Sinica, 2015, 64(13): 134501.doi:10.7498/aps.64.134501 |
[2] |
Zhang Fang, Li Wei, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun.Conformal invariance and conserved quantity of Mei symmetry for Appell equations in nonholonomic systems of Chetaev’s type with variable mass. Acta Physica Sinica, 2014, 63(16): 164501.doi:10.7498/aps.63.164501 |
[3] |
Sun Xian-Ting, Zhang Yao-Yu, Zhang Fang, Jia Li-Qun.Conformal invariance and Hojman conserved quantity of Lie symmetry for Appell equations in a holonomic system. Acta Physica Sinica, 2014, 63(14): 140201.doi:10.7498/aps.63.140201 |
[4] |
Han Yue-Lin, Sun Xian-Ting, Zhang Yao-Yu, Jia Li-Qun.Conformal invariance and conserved quantity of Mei symmetry for Appell equations in holonomic system. Acta Physica Sinica, 2013, 62(16): 160201.doi:10.7498/aps.62.160201 |
[5] |
Sun Xian-Ting, Han Yue-Lin, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun.A type of new conserved quantity of Mei symmetry for Appell equations in a holonomic system. Acta Physica Sinica, 2012, 61(20): 200204.doi:10.7498/aps.61.200204 |
[6] |
Xie Yin-Li, Jia Li-Qun, Yang Xin-Fang.Lie symmetry and Hojman conserved quantity of Nielsen equation in a dynamical system of the relative motion. Acta Physica Sinica, 2011, 60(3): 030201.doi:10.7498/aps.60.030201 |
[7] |
Yang Xin-Fang, Sun Xian-Ting, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun.Mei symmetry and Mei conserved quantity of Appell equations for nonholonomic systems of Chetaevs type with variable mass. Acta Physica Sinica, 2011, 60(11): 111101.doi:10.7498/aps.60.111101 |
[8] |
Luo Shao-Kai, Jia Li-Qun, Xie Yin-Li.Mei conserved quantity deduced from Mei symmetry of Appell equation in a dynamical system of relative motion. Acta Physica Sinica, 2011, 60(4): 040201.doi:10.7498/aps.60.040201 |
[9] |
Dong Wen-Shan, Huang Bao-Xin.Lie symmetries and Noether conserved quantities of generalized nonholonomic mechanical systems. Acta Physica Sinica, 2010, 59(1): 1-6.doi:10.7498/aps.59.1 |
[10] |
Li Yuan-Cheng, Xia Li-Li, Wang Xiao-Ming, Liu Xiao-Wei.Lie-Mei symmetry and conserved quantities of Appell equation for a holonomic mechanical system. Acta Physica Sinica, 2010, 59(6): 3639-3642.doi:10.7498/aps.59.3639 |
[11] |
Zhang Kai, Wang Ce, Zhou Li-Bin.Lie symmetry and conserved quantities of Nambu mechanical systems. Acta Physica Sinica, 2008, 57(11): 6718-6721.doi:10.7498/aps.57.6718 |
[12] |
Lou Zhi_Mei.The study of symmetries and conserved quantities for one class of linearly coupled multidimensional freedom systems. Acta Physica Sinica, 2007, 56(5): 2475-2478.doi:10.7498/aps.56.2475 |
[13] |
Zhang Yi.Symmetries and Mei conserved quantities for systems of generalized classical mechanics. Acta Physica Sinica, 2005, 54(7): 2980-2984.doi:10.7498/aps.54.2980 |
[14] |
Gu Shu-Long, Zhang Hong-Bin.Mei symmetry, Noether symmetry and Lie symmetry of a Vacco system. Acta Physica Sinica, 2005, 54(9): 3983-3986.doi:10.7498/aps.54.3983 |
[15] |
Luo Shao-Kai.Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system. Acta Physica Sinica, 2003, 52(12): 2941-2944.doi:10.7498/aps.52.2941 |
[16] |
Mei Feng-Xiang.Lie symmetry and the conserved quantity of a generalized Hamiltonian system. Acta Physica Sinica, 2003, 52(5): 1048-1050.doi:10.7498/aps.52.1048 |
[17] |
Li Yuan-Cheng, Zhang Yi, Liang Jing-Hui.. Acta Physica Sinica, 2002, 51(10): 2186-2190.doi:10.7498/aps.51.2186 |
[18] |
ZHANG YI, XUE YUN.LIE SYMMETRIES OF CONSTRAINED HAMILTONIAN SYSTEM WITH THE SECOND TYPE OF CONSTRAINTS . Acta Physica Sinica, 2001, 50(5): 816-819.doi:10.7498/aps.50.816 |
[19] |
MEI FENG-XIANG, SHANG MEI.LIE SYMMETRIES AND CONSERVED QUANTITIES OF FIRST ORDER LAGRANGE SYSTEMS. Acta Physica Sinica, 2000, 49(10): 1901-1903.doi:10.7498/aps.49.1901 |
[20] |
MEI FENG-XIANG.LIE SYMMETRIES AND CONSERVED QUANTITIES OF NONHOLONOMIC SYSTEMS WITH SERVOCONSTR AINTS. Acta Physica Sinica, 2000, 49(7): 1207-1210.doi:10.7498/aps.49.1207 |