[1] |
Shen Li-Hua, Chen Ji-Hong, Zeng Zhi-Gang, Jin Jian.Chaotic time series prediction based on robust extreme learning machine. Acta Physica Sinica, 2018, 67(3): 030501.doi:10.7498/aps.67.20171887 |
[2] |
Mei Ying, Tan Guan-Zheng, Liu Zhen-Tao, Wu He.Chaotic time series prediction based on brain emotional learning model and self-adaptive genetic algorithm. Acta Physica Sinica, 2018, 67(8): 080502.doi:10.7498/aps.67.20172104 |
[3] |
Li Rui-Guo, Zhang Hong-Li, Fan Wen-Hui, Wang Ya.Hermite orthogonal basis neural network based on improved teaching-learning-based optimization algorithm for chaotic time series prediction. Acta Physica Sinica, 2015, 64(20): 200506.doi:10.7498/aps.64.200506 |
[4] |
Wang Xin-Ying, Han Min.Multivariate chaotic time series prediction using multiple kernel extreme learning machine. Acta Physica Sinica, 2015, 64(7): 070504.doi:10.7498/aps.64.070504 |
[5] |
Zhang Guo-Yong, Wu Yong-Gang, Zhang Yang, Dai Xian-Liang.A simple model for probabilistic interval forecasts of wind power chaotic time series. Acta Physica Sinica, 2014, 63(13): 138801.doi:10.7498/aps.63.138801 |
[6] |
Zhang Yu-Mei, Wu Xiao-Jun, Bai Shu-Lin.Chaotic characteristic analysis for traffic flow series and DFPSOVF prediction model. Acta Physica Sinica, 2013, 62(19): 190509.doi:10.7498/aps.62.190509 |
[7] |
Zhang Xue-Qing, Liang Jun.Chaotic time series prediction model of wind power based on ensemble empirical mode decomposition-approximate entropy and reservoir. Acta Physica Sinica, 2013, 62(5): 050505.doi:10.7498/aps.62.050505 |
[8] |
Zhang Wen-Zhuan, Long Wen, Jiao Jian-Jun.Parameter determination based on composite evolutionary algorithm for reconstructing phase-space in chaos time series. Acta Physica Sinica, 2012, 61(22): 220506.doi:10.7498/aps.61.220506 |
[9] |
Li Jun, Zhang You-Peng.Single-step and multiple-step prediction of chaotic time series using Gaussian process model. Acta Physica Sinica, 2011, 60(7): 070513.doi:10.7498/aps.60.070513 |
[10] |
Zhang Chun-Tao, Ma Qian-Li, Peng Hong.Chaotic time series prediction based on information entropy optimized parameters of phase space reconstruction. Acta Physica Sinica, 2010, 59(11): 7623-7629.doi:10.7498/aps.59.7623 |
[11] |
Ma Qian-Li, Zheng Qi-Lun, Peng Hong, Qin Jiang-Wei.Chaotic time series prediction based on fuzzy boundary modular neural networks. Acta Physica Sinica, 2009, 58(3): 1410-1419.doi:10.7498/aps.58.1410 |
[12] |
Liu Fu-Cai, Zhang Yan-Liu, Chen Chao.Prediction of chaotic time series based on robust fuzzy clustering. Acta Physica Sinica, 2008, 57(5): 2784-2790.doi:10.7498/aps.57.2784 |
[13] |
Zhang Jun-Feng, Hu Shou-Song.Chaotic time series prediction based on RBF neural networks with a new clustering algorithm. Acta Physica Sinica, 2007, 56(2): 713-719.doi:10.7498/aps.56.713 |
[14] |
He Tao, Zhou Zheng-Ou.Prediction of chaotic time series based on fractal self-affinity. Acta Physica Sinica, 2007, 56(2): 693-700.doi:10.7498/aps.56.693 |
[15] |
Liu Fu-Cai, Sun Li-Ping, Liang Xiao-Ming.Prediction of chaotic time series based on hierarchical fuzzy-clustering. Acta Physica Sinica, 2006, 55(7): 3302-3306.doi:10.7498/aps.55.3302 |
[16] |
Cui Wan-Zhao, Zhu Chang-Chun, Bao Wen-Xing, Liu Jun-Hua.Prediction of the chaotic time series using support vector machines for fuzzy rule-based modeling. Acta Physica Sinica, 2005, 54(7): 3009-3018.doi:10.7498/aps.54.3009 |
[17] |
Ye Mei-Ying, Wang Xiao-Dong, Zhang Hao-Ran.Chaotic time series forecasting using online least squares support vector machine regression. Acta Physica Sinica, 2005, 54(6): 2568-2573.doi:10.7498/aps.54.2568 |
[18] |
Li Jun, Liu Jun-Hua.On the prediction of chaotic time series using a new generalized radial basis function neural networks. Acta Physica Sinica, 2005, 54(10): 4569-4577.doi:10.7498/aps.54.4569 |
[19] |
Wang Hong-Wei, Ma Guang-Fu.Prediction of chaotic time series based on fuzzy model. Acta Physica Sinica, 2004, 53(10): 3293-3297.doi:10.7498/aps.53.3293 |
[20] |
Tan Wen, Wang Yao-Nan, Zhou Shao-Wu, Liu Zu-Run.Prediction of the chaotic time series using neuro-fuzzy networks. Acta Physica Sinica, 2003, 52(4): 795-801.doi:10.7498/aps.52.795 |