-
This paper provides two new fourth-order force gradient symplectic intrgrators,each of which is obtained from a symmetric product of two identied optimal third-order force gradient symplectic algorithms reported in the literature. They are both greatly superior to the fourth-order non-gradient symplectic method of Forest and Ruth in the accuracy of either energy on chaotic perturbed Kepler problems or the energy eigenvalues for one-dimensional Schrö,dinger equations. So are they to the known optimalfourth-order force gradient symplectic scheme.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37]
Catalog
Metrics
- Abstract views:8341
- PDF Downloads:691
- Cited By:0