[1] |
Yan Yu-Wei, Jiang Yuan, Yang Song-Qing, Yu Rong-Bin, Hong Cheng.Network failure model based on time series. Acta Physica Sinica, 2022, 71(8): 088901.doi:10.7498/aps.71.20212106 |
[2] |
Li Jun, Li Da-Chao.Wind power time series prediction using optimized kernel extreme learning machine method. Acta Physica Sinica, 2016, 65(13): 130501.doi:10.7498/aps.65.130501 |
[3] |
Wei De-Zhi, Chen Fu-Ji, Zheng Xiao-Xue.Internet public opinion chaotic prediction based on chaos theory and the improved radial basis function in neural networks. Acta Physica Sinica, 2015, 64(11): 110503.doi:10.7498/aps.64.110503 |
[4] |
Tian Zhong-Da, Li Shu-Jiang, Wang Yan-Hong, Gao Xian-Wen.Chaotic characteristics analysis and prediction for short-term wind speed time series. Acta Physica Sinica, 2015, 64(3): 030506.doi:10.7498/aps.64.030506 |
[5] |
Song Tong, Li Han.Chaotic time series prediction based on wavelet echo state network. Acta Physica Sinica, 2012, 61(8): 080506.doi:10.7498/aps.61.080506 |
[6] |
Sheng Zheng.Research on different time-scale prediction models for the total electron content. Acta Physica Sinica, 2012, 61(21): 219401.doi:10.7498/aps.61.219401 |
[7] |
Yao Tian-Liang, Liu Hai-Feng, Xu Jian-Liang, Li Wei-Feng.Noise-level estimation of noisy chaotic time series based on the invariant of the largest Lyapunov exponent. Acta Physica Sinica, 2012, 61(6): 060503.doi:10.7498/aps.61.060503 |
[8] |
Li Jun, Zhang You-Peng.Single-step and multiple-step prediction of chaotic time series using Gaussian process model. Acta Physica Sinica, 2011, 60(7): 070513.doi:10.7498/aps.60.070513 |
[9] |
Wu Jian-Jun, Xu Shang-Yi, Sun Hui-Jun.Detrended fluctuation analysis of time series in mixed traffic flow. Acta Physica Sinica, 2011, 60(1): 019502.doi:10.7498/aps.60.019502 |
[10] |
Dong Zhao, Li Xiang.The study of network motifs induced from discrete time series. Acta Physica Sinica, 2010, 59(3): 1600-1607.doi:10.7498/aps.59.1600 |
[11] |
Song Qing-Song, Feng Zu-Ren, Li Ren-Hou.Multiple clusters echo state network for chaotic time series prediction. Acta Physica Sinica, 2009, 58(7): 5057-5064.doi:10.7498/aps.58.5057 |
[12] |
Du Jie, Cao Yi-Jia, Liu Zhi-Jian, Xu Li-Zhong, Jiang Quan-Yuan, Guo Chuang-Xin, Lu Jin-Gui.Local higher-order Volterra filter multi-step prediction model of chaotic time series. Acta Physica Sinica, 2009, 58(9): 5997-6005.doi:10.7498/aps.58.5997 |
[13] |
Yang Yong-Feng, Ren Xing-Min, Qin Wei-Yang, Wu Ya-Feng, Zhi Xi-Zhe.Prediction of chaotic time series based on EMD method. Acta Physica Sinica, 2008, 57(10): 6139-6144.doi:10.7498/aps.57.6139 |
[14] |
Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da.Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica, 2008, 57(10): 6120-6131.doi:10.7498/aps.57.6120 |
[15] |
Wu Yan-Dong, Xie Hong-Bo.A new method to recognize determinism in time series. Acta Physica Sinica, 2007, 56(11): 6294-6300.doi:10.7498/aps.56.6294 |
[16] |
Meng Qing-Fang, Zhang Qiang, Mu Wen-Ying.A novel multi-step adaptive prediction method for chaotic time series. Acta Physica Sinica, 2006, 55(4): 1666-1671.doi:10.7498/aps.55.1666 |
[17] |
Cui Wan-Zhao, Zhu Chang-Chun, Bao Wen-Xing, Liu Jun-Hua.Prediction of the chaotic time series using support vector machines. Acta Physica Sinica, 2004, 53(10): 3303-3310.doi:10.7498/aps.53.3303 |
[18] |
Tan Wen, Wang Yao-Nan, Zhou Shao-Wu, Liu Zu-Run.Prediction of the chaotic time series using neuro-fuzzy networks. Acta Physica Sinica, 2003, 52(4): 795-801.doi:10.7498/aps.52.795 |
[19] |
Gan Jian-Chao, Xiao Xian-Ci.Nonlinear adaptive multi-step-prediction of chaotic time series based on points in the neighborhood. Acta Physica Sinica, 2003, 52(12): 2995-3001.doi:10.7498/aps.52.2995 |
[20] |
Zhang Jiashu, Xiao Xianchi.. Acta Physica Sinica, 2000, 49(3): 403-408.doi:10.7498/aps.49.403 |