[1] |
Li Ji, Chen Liang, Feng Mang.Research progress of heat transport in trapped-ion crystals. Acta Physica Sinica, 2024, 73(3): 033701.doi:10.7498/aps.73.20231719 |
[2] |
Zheng Jian-Jun, Zhang Li-Ping.Monolayer Cu2X (X=S, Se): excellent thermoelectric material with low lattice thermal conductivity. Acta Physica Sinica, 2023, 0(0): 0-0.doi:10.7498/aps.72.20220015 |
[3] |
Wang Fu, Zhou Yi, Gao Shi-Xin, Duan Zhen-Gang, Sun Zhi-Peng, Wang Jun, Zou Yu, Fu Bao-Qin.Molecular dynamics study of effects of point defects on thermal conductivity in cubic silicon carbide. Acta Physica Sinica, 2022, 71(3): 036501.doi:10.7498/aps.71.20211434 |
[4] |
Cao Yi-Gang, Fu Meng-Meng, Yang Xi-Chang, Li Deng-Feng, Wang Xiao-Xia.Effect of thermal conduction on Kelvin-Helmholtz instability in straight pipe with different cross-sections. Acta Physica Sinica, 2022, 71(9): 094701.doi:10.7498/aps.71.20211155 |
[5] |
Qin Cheng-Long, Luo Xiang-Yan, Xie Quan, Wu Qiao-Dan.Molecular dynamics study of thermal conductivity of carbon nanotubes and silicon carbide nanotubes. Acta Physica Sinica, 2022, 71(3): 030202.doi:10.7498/aps.71.20210969 |
[6] |
Liu Ying-Guang, Ren Guo-Liang, Hao Jiang-Shuai, Zhang Jing-Wen, Xue Xin-Qiang.Thermal conductivity of Si/Ge superlattices containing tilted interface. Acta Physica Sinica, 2021, 70(11): 113101.doi:10.7498/aps.70.20201807 |
[7] |
Liu Ying-Guang, Hao Jiang-Shuai, Ren Guo-Liang, Zhang Jing-Wen.Thermal conductivities of different period Si/Ge superlattices. Acta Physica Sinica, 2021, 70(7): 073101.doi:10.7498/aps.70.20201789 |
[8] |
Tang Dao-Sheng, Hua Yu-Chao, Zhou Yan-Guang, Cao Bing-Yang.Thermal conductivity modeling of GaN films. Acta Physica Sinica, 2021, 70(4): 045101.doi:10.7498/aps.70.20201611 |
[9] |
.Effects of point defects on thermal conductivity in cubic silicon carbide: A molecular dynamics study. Acta Physica Sinica, 2021, (): .doi:10.7498/aps.70.20211434 |
[10] |
Wu Xiang-Shui, Tang Wen-Ting, Xu Xiang-Fan.Recent progresses of thermal conduction in two-dimensional materials. Acta Physica Sinica, 2020, 69(19): 196602.doi:10.7498/aps.69.20200709 |
[11] |
Liu Ying-Guang, Zhang Shi-Bing, Han Zhong-He, Zhao Yu-Jin.Influence of grain size on the thermal conduction of nanocrystalline copper. Acta Physica Sinica, 2016, 65(10): 104401.doi:10.7498/aps.65.104401 |
[12] |
Li Zhu-Song, Steven Zhu.Continuum modeling of thermal transport in superlattices and layered materials for new energy matierlas. Acta Physica Sinica, 2016, 65(11): 116802.doi:10.7498/aps.65.116802 |
[13] |
Gan Yu-Lin, Wang Li, Su Xue-Qiong, Xu Si-Wei, Kong Le, Shen Xiang.Thermal conductivity measurement on GeSbSe glasses:Raman scattering spectra method. Acta Physica Sinica, 2014, 63(13): 136502.doi:10.7498/aps.63.136502 |
[14] |
Ao Hong-Rui, Chen Yi, Dong Ming, Jiang Hong-Yuan.Multiphysics-based simulation on heat conduction mechanism of TFC head and its influencing factors. Acta Physica Sinica, 2014, 63(3): 034401.doi:10.7498/aps.63.034401 |
[15] |
Li Jing, Feng Yan-Hui, Zhang Xin-Xin, Huang Cong-Liang, Yang Mu.Thermal conductivities of metallic nanowires with considering surface and grain boundary scattering. Acta Physica Sinica, 2013, 62(18): 186501.doi:10.7498/aps.62.186501 |
[16] |
Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Jing, Wang Ge, Chou Ai-Hui.Thermal conductivity of metallic nanoparticle. Acta Physica Sinica, 2013, 62(2): 026501.doi:10.7498/aps.62.026501 |
[17] |
Bao Hua.Prediction of lattice thermal conductivity of solid argon from anharmonic lattice dynamics method. Acta Physica Sinica, 2013, 62(18): 186302.doi:10.7498/aps.62.186302 |
[18] |
Hou Quan-Wen, Cao Bing-Yang, Guo Zeng-Yuan.Thermal conductivity of carbon nanotube: From ballistic to diffusive transport. Acta Physica Sinica, 2009, 58(11): 7809-7814.doi:10.7498/aps.58.7809 |
[19] |
Li Shi-Bin, Wu Zhi-Ming, Yuan Kai, Liao Nai-Man, Li Wei, Jiang Ya-Dong.Study on thermal conductivity of hydrogenated amorphous silicon films. Acta Physica Sinica, 2008, 57(5): 3126-3131.doi:10.7498/aps.57.3126 |
[20] |
Bao Wen-Xing, Zhu Chang-Chun.Study of thermal conduction of carbon nanotube by molecular dynamics. Acta Physica Sinica, 2006, 55(7): 3552-3557.doi:10.7498/aps.55.3552 |