[1] |
Ma Zhao-Zhao, Yang Qing-Chao, Zhou Rui-Ping.Lyapunov exponent algorithm based on perturbation theory for discontinuous systems. Acta Physica Sinica, 2021, 70(24): 240501.doi:10.7498/aps.70.20210492 |
[2] |
Li Jun, Hou Xin-Yan.Dynamic reconstruction of chaotic system based on exponential weighted online sequential extreme learning machine with kernel. Acta Physica Sinica, 2019, 68(10): 100503.doi:10.7498/aps.68.20190156 |
[3] |
Li Qing-Du, Guo Jian-Li.Algorithm for calculating the Lyapunov exponents of switching system and its application. Acta Physica Sinica, 2014, 63(10): 100501.doi:10.7498/aps.63.100501 |
[4] |
Zhang Ling-Mei, Zhang Jian-Wen, Wu Run-Heng.Anti-control of Hopf bifurcation in the new chaotic system with piecewise system and exponential system. Acta Physica Sinica, 2014, 63(16): 160505.doi:10.7498/aps.63.160505 |
[5] |
Wu Hao, Hou Wei, Wang Wen-Xiang, Yan Peng-Cheng.Try to use Lyapunov exponent to discuss the abrupt climate change and its precursory signals. Acta Physica Sinica, 2013, 62(12): 129204.doi:10.7498/aps.62.129204 |
[6] |
Zhou Xiao-Yong.A chaotic system with invariable Lyapunov exponent and its circuit simulation. Acta Physica Sinica, 2011, 60(10): 100503.doi:10.7498/aps.60.100503 |
[7] |
Feng Chao-Wen, Cai Li, Kang Qiang, Zhang Li-Sen.A novel three-dimensional autonomous chaotic system. Acta Physica Sinica, 2011, 60(3): 030503.doi:10.7498/aps.60.030503 |
[8] |
Liu Yang-Zheng, Lin Chang-Sheng, Li Xin-Chao.Family of switched unified chaotic system. Acta Physica Sinica, 2011, 60(4): 040505.doi:10.7498/aps.60.040505 |
[9] |
Wu Ran-Chao, Guo Yu-Xiang.Linear control and anti-control of chaotic systems with only one nonlinear term. Acta Physica Sinica, 2010, 59(8): 5293-5298.doi:10.7498/aps.59.5293 |
[10] |
Yu Si-Yao, Guo Shu-Xu, Gao Feng-Li.Calculation of the Lyapunov exponent for low frequency noise in semiconductor laser and chaos indentification. Acta Physica Sinica, 2009, 58(8): 5214-5217.doi:10.7498/aps.58.5214 |
[11] |
Zhang Xiao-Dan, Liu Xiang, Zhao Pin-Dong.Methods for calculating the main-axis Lyapunov exponents of a type of chaotic systems with delay. Acta Physica Sinica, 2009, 58(7): 4415-4420.doi:10.7498/aps.58.4415 |
[12] |
Zhang Yong, Guan Wei.Predication of multivariable chaotic time series based on maximal Lyapunov exponent. Acta Physica Sinica, 2009, 58(2): 756-763.doi:10.7498/aps.58.756 |
[13] |
Tang Liang-Rui, Li Jing, Fan Bing, Zhai Ming-Yue.A new three-dimensional chaotic system and its circuit simulation. Acta Physica Sinica, 2009, 58(2): 785-793.doi:10.7498/aps.58.785 |
[14] |
Li Chun-Biao, Wang De-Chun.An attractor with invariable Lyapunov exponent spectrum and its Jerk circuit implementation. Acta Physica Sinica, 2009, 58(2): 764-770.doi:10.7498/aps.58.764 |
[15] |
Liu Yang-Zheng, Jiang Chang-Sheng.Building and analysis of properties of a class of correlative and switchable hyperchaotic system. Acta Physica Sinica, 2009, 58(2): 771-778.doi:10.7498/aps.58.771 |
[16] |
Liu Ming-Hua, Feng Jiu-Chao.A new hyperchaotic system. Acta Physica Sinica, 2009, 58(7): 4457-4462.doi:10.7498/aps.58.4457 |
[17] |
Liu Yang-Zheng, Jiang Chang-Sheng, Li Xin-Chao, Sun Han.Circuit experimentation for a complicated hyperchaotic Lü system. Acta Physica Sinica, 2008, 57(11): 6808-6814.doi:10.7498/aps.57.6808 |
[18] |
Zhang Qi-Chang, Tian Rui-Lan, Wang Wei.Chaotic properties of mechanically and electrically coupled nonlinear dynamical systems. Acta Physica Sinica, 2008, 57(5): 2799-2804.doi:10.7498/aps.57.2799 |
[19] |
Liu Yang-Zheng, Jiang Chang-Sheng, Lin Chang-Sheng, Xiong Xing, Shi Lei.A class of switchable 3D chaotic systems. Acta Physica Sinica, 2007, 56(6): 3107-3112.doi:10.7498/aps.56.3107 |
[20] |
Liu Yang-Zheng, Jiang Chang-Sheng, Lin Chang-Sheng, Sun Han.Four-dimensional switchable hyperchaotic system. Acta Physica Sinica, 2007, 56(9): 5131-5135.doi:10.7498/aps.56.5131 |