[1] |
Zhao Da-Shuai, Sun Zhi, Sun Xing, Sun Huai-De, Han Bai.Micro gap air discharge based on fractal theory. Acta Physica Sinica, 2021, 70(20): 205207.doi:10.7498/aps.70.20210362 |
[2] |
Liu Zhe, Wang Lei-Lei, Shi Peng-Peng, Cui Hai-Hang.Experiments and analytical solutions of light driven flow in nanofluid droplets. Acta Physica Sinica, 2020, 69(6): 064701.doi:10.7498/aps.69.20191508 |
[3] |
Zhang Bei-Hao, Zheng Lin.Numerical simulation of natural convection of nanofluids in an inclined square porous enclosure by lattice Boltzmann method. Acta Physica Sinica, 2020, 69(16): 164401.doi:10.7498/aps.69.20200308 |
[4] |
Zhang Zhi-Qi, Qian Sheng, Wang Rui-Jin, Zhu Ze-Fei.Effect of aggregation morphology of nanoparticles on thermal conductivity of nanofluid. Acta Physica Sinica, 2019, 68(5): 054401.doi:10.7498/aps.68.20181740 |
[5] |
He Yu-Chen, Liu Xiang-Jun.Simulation studies on the transport properties of Cu-H2O nanofluids based on water continuum assumption. Acta Physica Sinica, 2015, 64(19): 196601.doi:10.7498/aps.64.196601 |
[6] |
Zhang Cheng-Bin, Cheng Qi-Kun, Chen Yong-Ping.Molecular dynamics simulation on thermal conductivity of nanocomposites embedded with fractal structure. Acta Physica Sinica, 2014, 63(23): 236601.doi:10.7498/aps.63.236601 |
[7] |
Guo Ya-Li, Xu He-Han, Shen Sheng-Qiang, Wei Lan.Nanofluid Raleigh-Benard convection in rectangular cavity: simulation with lattice Boltzmann method. Acta Physica Sinica, 2013, 62(14): 144704.doi:10.7498/aps.62.144704 |
[8] |
Xing Hong-Yan, Gong Ping, Xu Wei.Small target detection in the background of sea clutter using fractal method. Acta Physica Sinica, 2012, 61(16): 160504.doi:10.7498/aps.61.160504 |
[9] |
Wu Guo-Cheng, Shi Xiang-Chao.Fractional differentiability of the non-smooth heat curve. Acta Physica Sinica, 2012, 61(19): 190502.doi:10.7498/aps.61.190502 |
[10] |
Yun Mei-Juan, Zheng Wei, Li Yun-Bao, Li Yu.Fractal analysis of Herschel-Bulkley fluid flow in a capillary. Acta Physica Sinica, 2012, 61(16): 164701.doi:10.7498/aps.61.164701 |
[11] |
Zheng Kun-Can, Wen Zhi, Wang Zhan-Sheng, Lou Guo-Feng, Liu Xun-Liang, Wu Wen-Fei.Review on forced convection heat transfer in porous media. Acta Physica Sinica, 2012, 61(1): 014401.doi:10.7498/aps.61.014401 |
[12] |
Yang Juan, Bian Bao-Min, Peng Gang, Li Zhen-Hua.The fractal character of two-parameter pulse model for random signal. Acta Physica Sinica, 2011, 60(1): 010508.doi:10.7498/aps.60.010508 |
[13] |
Yuan Mei-Juan, Zheng Wei, Yu Bo-Ming, Yuan Jie.Fractal analysis of Casson fluid flow in porous media. Acta Physica Sinica, 2011, 60(2): 024703.doi:10.7498/aps.60.024703 |
[14] |
Zhang Li, Liu Shu-Tang.Control of thermal diffusion fractal growth of thin plate under environmental disturbance. Acta Physica Sinica, 2010, 59(11): 7708-7712.doi:10.7498/aps.59.7708 |
[15] |
Zhao Sheng, Yin Jian-Bo, Zhao Xiao-Peng.Tunable optical properties of Au nanofluids under electric field. Acta Physica Sinica, 2010, 59(5): 3302-3308.doi:10.7498/aps.59.3302 |
[16] |
Xie Hua-Qing, Chen Li-Fei.Mechanism of enhanced convective heat transfer coefficient of nanofluids. Acta Physica Sinica, 2009, 58(4): 2513-2517.doi:10.7498/aps.58.2513 |
[17] |
Meng Tian-Hua, Zhao Guo-Zhong, Zhang Cun-Lin.Study of enhanced transmission of terahertz radiation through subwavelength fractals structures. Acta Physica Sinica, 2008, 57(6): 3846-3852.doi:10.7498/aps.57.3846 |
[18] |
Li Tong, Shang Peng-Jian.A multifractal approach to palmprint recognition. Acta Physica Sinica, 2007, 56(8): 4393-4400.doi:10.7498/aps.56.4393 |
[19] |
Shu Xue-Ming, Fang Jun, Shen Shi-Fei, Liu Yong-Jin, Yuan Hong-Yong, Fan Wei-Cheng.Study on fractal coagulation characteristics of fire smoke particles. Acta Physica Sinica, 2006, 55(9): 4466-4471.doi:10.7498/aps.55.4466 |
[20] |
Xie Hua-Qing, Xi Tong-Geng, Wang Jin-Chang.Study on the mechanism of heat conduction in nanofluid medium. Acta Physica Sinica, 2003, 52(6): 1444-1449.doi:10.7498/aps.52.1444 |