Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

He Jia-Qi, He Da-Wei, Wang Yong-Sheng, Liu Zhi-Yong
PDF
Get Citation

  • This paper studies the influence of poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) on solution-processable functionalized graphene oxide (SPFGO) composite film-based organic light emitting Diode (OLED) and organic photovoltaic (OPV) performance for different SPFGO concentrations. There is a strong quenching of photoluminescence when MEH-PPV is doped with SPFGO, which means there is a strong transfer of electron and energy between MEH-PPV and SPFGO. Doping SPFGO in MEH-PPV can improve the performance of OLED at low concentration, and the performance will be the best when the concentration of SPFGO is 0.2%; however, the performance of OPV remains unchanged. The performance of OPV could be improved by high doping concentration of SPFGO, the performance will be the best when the concentration of SPFGO reaches 15%, and there is a quenching in the electroluminescence (EL) of OLED. As shown in the statistics of the experiment, SPFGO can increase the injectivity of carriers, and when the SPFGO is of low concentration, it can increase the luminous intensity of OLED and reduce the threshold voltage. SPFGO can act as an electron acceptor, and when the concentration of SPFGO is high, the exciton dissociation at MEH-PPV/SPFGO interface can be improved, and the performance of OPV can be also improved. Therefore, the concentration of SPFGO should be the main factor in adjusting the performance of OLED and OPV separately.
      • Funds:Project supported by the National Basic Research Program of China (Grant Nos. 2011CB932700, 2011CB932703), the National Science Fund for Distinguished Young Scholars of China (Grant No. 60825407), the National Natural Science Foundation of China (Grant No. 61077044), and the Natural Science Foundation of Beijing, China (Grant No. 4132031), and the National Natural Science Foundation of China (Grant Nos. 61378073, 61335006).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

    • [1] Wei Fu-Xian, Liu Jun-Hong, Peng Teng, Wang Bo, Zhu Hong-Qiang, Chen Xiao-Li, Xiong Zu-Hong.Detection of Dexter energy transfer process in interface-type OLED via utilizing the characteristic magneto-electroluminescence response of hot exciton reverse intersystem crossing. Acta Physica Sinica, 2023, 72(18): 187201.doi:10.7498/aps.72.20230998
      [2] Jiang Wen-Long, Meng Zhao-Hui, Cong Lin, Wang Jin, Wang Li-Zhong, Han Qiang, Meng Fan-Chao, Gao Yong-Hui.The role of magnetic fields on the efficiency of OLED of double quantum well structures. Acta Physica Sinica, 2010, 59(9): 6642-6646.doi:10.7498/aps.59.6642
      [3] Hu Yue, Rao Hai-Bo, Li Jun-Fei.Numerical model of ITO /organic semiconductor/metal organic light emitting device. Acta Physica Sinica, 2008, 57(9): 5928-5932.doi:10.7498/aps.57.5928
      [4] Wang Jun, Wei Xiao-Qiang, Rao Hai-Bo, Cheng Jian-Bo, Jiang Ya-Dong.High-efficiency and high-stability phosphorescent OLED based on new Ir complex. Acta Physica Sinica, 2007, 56(2): 1156-1161.doi:10.7498/aps.56.1156
    Metrics
    • Abstract views:5516
    • PDF Downloads:793
    • Cited By:0
    Publishing process
    • Received Date:19 March 2013
    • Accepted Date:27 May 2013
    • Published Online:05 September 2013

      返回文章
      返回
        Baidu
        map