In this paper, based on the effective Jaynes-Cummings-Hubbard model Hamiltonian in the presence of detuning, we use the mean-field and the perturbation theory to figure out the superfluid order parameter of the system. By which we find that detuning from resonance allows one to drive the system from the superfluid into the insulator state of the polaritons and the reverse. In addition, combining with the properties of transportation of coupled dissipative cavity arrays with detuning, we discuss the influence of detuning on the number of superfluid polaritons and the lifetime of superfluid states. It suggests that the number of the superfluid polaritons will increase to its maximum and then reduce again along the negative part of detuning, which is similar to the spectrum of the transmission.