[1] |
Jiang Shuang-Shuang, Zhu Li, Liu Si-Nan, Yang Zhan-Zhan, Lan Si, Wang Yin-Gang.Densification and heterogeneity enhancement of Fe-based metallic glass under local plastic flow. Acta Physica Sinica, 2022, 71(5): 058101.doi:10.7498/aps.71.20211304 |
[2] |
.Densification and heterogeneity enhancement of a Fe-based metallic glass under local plastic flow. Acta Physica Sinica, 2021, (): .doi:10.7498/aps.70.20211304 |
[3] |
Liu Qi, Guan Peng-Fei.First principle study on atomic structure of La65X35(X=Ni, Al) metallic glasses. Acta Physica Sinica, 2018, 67(17): 178101.doi:10.7498/aps.67.20180992 |
[4] |
Shang Ji-Xiang, Zhao Yun-Bo, Hu Li-Na.Abnormal viscosity changes in high-temperature metallic melts. Acta Physica Sinica, 2018, 67(10): 106402.doi:10.7498/aps.67.20172721 |
[5] |
Wu Zhen-Wei, Li Mao-Zhi, Xu Li-Mei, Wang Wei-Hua.Inherited structure of amorphous matter. Acta Physica Sinica, 2017, 66(17): 176405.doi:10.7498/aps.66.176405 |
[6] |
Liu Yan-Hui.Combinatorial fabrication and high-throughput characterization of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176106.doi:10.7498/aps.66.176106 |
[7] |
Yi Jun.Fabrications and mechanical behaviors of amorphous fibers. Acta Physica Sinica, 2017, 66(17): 178102.doi:10.7498/aps.66.178102 |
[8] |
Yu Hai-Bin, Yang Qun.Ultrastable glasses. Acta Physica Sinica, 2017, 66(17): 176108.doi:10.7498/aps.66.176108 |
[9] |
Wang Jun-Qiang, Ouyang Su.Extended elastic model for flow of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176102.doi:10.7498/aps.66.176102 |
[10] |
Hu Li-Na, Zhao Xi, Zhang Chun-Zhi.Fragile-to-strong transition in metallic glass-forming liquids. Acta Physica Sinica, 2017, 66(17): 176403.doi:10.7498/aps.66.176403 |
[11] |
Yuan Chen-Chen.Bonding nature and the origin of ductility of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176402.doi:10.7498/aps.66.176402 |
[12] |
Guo Gu-Qing, Wu Shi-Yang, Cai Guang-Bo, Yang Liang.Identifying icosahedron-like clusters in metallic glasses. Acta Physica Sinica, 2016, 65(9): 096402.doi:10.7498/aps.65.096402 |
[13] |
Wu Fei-Fei, Yu Peng, Bian Xi-Lei, Tan Jun, Wang Jian-Guo, Wang Gang.Correlation between fracture mechanism and fracture toughness in metallic glasses. Acta Physica Sinica, 2014, 63(5): 058101.doi:10.7498/aps.63.058101 |
[14] |
Xu Chun-Long, Hou Zhao-Yang, Liu Rang-Su.Simulation study on thermodynamic, dynamic and structural transition mechanisms during the formation of Ca70Mg30 metallic glass. Acta Physica Sinica, 2012, 61(13): 136401.doi:10.7498/aps.61.136401 |
[15] |
Han Guang, Qiang Jian-Bing, Wang Qing, Wang Ying-Min, Xia Jun-Hai, Zhu Chun-Lei, Quan Shi-Guang, Dong Chuang.Electrochemical potential equilibrium of electrons in ideal metallic glasses based on the cluster-resonance model. Acta Physica Sinica, 2012, 61(3): 036402.doi:10.7498/aps.61.036402 |
[16] |
Chen Yan, Jiang Min-Qiang, Dai Lan-Hong.Temperature-dependent yield asymmetry between tension and compression in metallic glasses. Acta Physica Sinica, 2012, 61(3): 036201.doi:10.7498/aps.61.036201 |
[17] |
Yu Yu-Ying, Xi Feng, Dai Cheng-Da, Cai Ling-Cang, Tan Hua, Li Xue-Mei, Hu Chang-Ming.Plastic behavior of Zr51Ti5Ni10Cu25Al9 metallic glass under planar shock loading. Acta Physica Sinica, 2012, 61(19): 196202.doi:10.7498/aps.61.196202 |
[18] |
Wang Yong-Tian, Zhao Zuo-Feng, Pang Zhi-Yong, Liu Ran, Pan Ming-Xiang, Zhao De-Qian, Wang Wan-Lu, Han Bao-Shan, Wang Wei-Hua.Pr-based bulk nanocrystalline alloy and its properties. Acta Physica Sinica, 2005, 54(6): 2838-2842.doi:10.7498/aps.54.2838 |
[19] |
Tong Cun-Zhu, Zheng Pjing, Bai Hai-Yang, Chen Zhao-Jia, Luo Jian-Lin, Zhang Jie, Lin De-Hua, Wang Wei-Hua.. Acta Physica Sinica, 2002, 51(7): 1559-1563.doi:10.7498/aps.51.1559 |
[20] |
RONG CHUAN-BING, ZHAO YU-HUA, XU MIN, ZHAO HENG-HE, CHEHG LI-ZHI, HE KAI-YUAN.STRUCTURE AND MAGNETIC PROPERTIES OF Fe62Co8-x(Cr,Mo)xNb4Zr6B20 AMORPHOUSALLOY WITH A WIDE SUPERCOOLED LIQUID REGION. Acta Physica Sinica, 2001, 50(11): 2235-2240.doi:10.7498/aps.50.2235 |