In this work, semi-classical quantum molecular dynamics is used to investigate the influence of high momentum distribution on nuclear reaction systems by using photons produced by nucleon bremsstrahlung as indicators. The research examines the relationship between this influence and the incident energy, collision parameters, and the differences in isotopic spin cross-sections. Under the condition of a 20% high-momentum distribution and ensuring the conservation of nuclear energy, a system different from traditional configurations is constructed by sampling neutrons and protons using the Monte Carlo method, with the selected nucleons exhibiting characteristics of high-momentum nucleons. The influence of high-momentum distribution within the nucleus on bremsstrahlung photons is analyzed through the collision results of heavy ions in nuclear systems spanning from light to heavy species. The results indicate that, at an incident energy value of 50 MeV/u, the collision system studied in this work exhibits higher photon density in the high-energy region of high momentum distribution system than traditional system for nuclear systems ranging from light-mass system (18O+18O), lower-mass system (46Ca+46Ca), and medium-mass system (86Kr+86Sr) to heavy-mass system (124Sn+124Sn), than those, while there is no significant difference in photon density in the low-energy region. At a collision parameter b = 0 fm, the energy shift phenomenon of photons produced by collisions becomes more pronounced with the increase of incident energy, peaking at E = 150 MeV/u. This energy transfer phenomenon induced by high momentum distribution typically exists within the collision parameter range from b = 0 fm to b = 6 fm. When considering isotopic spin cross-sections, high momentum distribution can affect the collision probability of the system. Therefore, high momentum distribution has a significant influence on nuclear reaction system, closely related to incident energy and isotopic spin cross-section.