[1] |
ZHANG Suncheng, HAN Tongwei, WANG Rumeng, YANG Yantao, ZHANG Xiaoyan. Prediction and optimization of negative Poisson’s ratio in rhombic perforated graphene based on machine learning. Acta Physica Sinica,
doi: 10.7498/aps.74.20241624
|
[2] |
WU Yanghai, DU Hailong, XUE Lei, LI Jiaxian, XUE Miao, ZHENG Guoyao. Machine Learning-Based Prediction of Heat Load on Tokamak Divertor Target Plates. Acta Physica Sinica,
doi: 10.7498/aps.74.20250381
|
[3] |
GUO Yan, LYU Heng, DING Chunling, YUAN Chenzhi, JIN Ruibo. Machine learning identification of fractional-order vortex beam diffraction process. Acta Physica Sinica,
doi: 10.7498/aps.74.20241458
|
[4] |
ZHANG Tong, WANG Jiahao, TIAN Shuai, SUN Xuran, LI Ri. Machine learning-based study of dynamic shrinkage behavior during solidification of castings. Acta Physica Sinica,
doi: 10.7498/aps.74.20241581
|
[5] |
WANG Peng, MAIMAITINIYAZI Maimaitiabudula. Quantum dynamics of machine learning. Acta Physica Sinica,
doi: 10.7498/aps.74.20240999
|
[6] |
Song Rui, Liu Xue-Mei, Wang Hai-Bin, Lü Hao, Song Xiao-Yan. Hardness prediction of WC-Co cemented carbide based on machine learning model. Acta Physica Sinica,
doi: 10.7498/aps.73.20240284
|
[7] |
Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-Qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing. Prediction of magnetic Janus materials based on machine learning and first-principles calculations. Acta Physica Sinica,
doi: 10.7498/aps.73.20241278
|
[8] |
Zhang Xu, Ding Jin-Min, Hou Chen-Yang, Zhao Yi-Ming, Liu Hong-Wei, Liang Sheng. Machine learning based laser homogenization method. Acta Physica Sinica,
doi: 10.7498/aps.73.20240747
|
[9] |
Zhang Jia-Hui. Machine learning for in silico protein research. Acta Physica Sinica,
doi: 10.7498/aps.73.20231618
|
[10] |
Ouyang Xin-Jian, Zhang Yan-Xing, Wang Zhi-Long, Zhang Feng, Chen Wei-Jia, Zhuang Yuan, Jie Xiao, Liu Lai-Jun, Wang Da-Wei. Modeling ferroelectric phase transitions with graph convolutional neural networks. Acta Physica Sinica,
doi: 10.7498/aps.73.20240156
|
[11] |
Zhang Yi-Fan, Ren Wei, Wang Wei-Li, Ding Shu-Jian, Li Nan, Chang Liang, Zhou Qian. Machine learning combined with solid solution strengthening model for predicting hardness of high entropy alloys. Acta Physica Sinica,
doi: 10.7498/aps.72.20230646
|
[12] |
Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang. Application of machine learning in cosmic ray particle identification. Acta Physica Sinica,
doi: 10.7498/aps.72.20230334
|
[13] |
Guan Xing-Yue, Huang Heng-Yan, Peng Hua-Qi, Liu Yan-Hang, Li Wen-Fei, Wang Wei. Machine learning in molecular simulations of biomolecules. Acta Physica Sinica,
doi: 10.7498/aps.72.20231624
|
[14] |
Guo Wei-Chen, Ai Bao-Quan, He Liang. Reveal flocking phase transition of self-propelled active particles by machine learning regression uncertainty. Acta Physica Sinica,
doi: 10.7498/aps.72.20230896
|
[15] |
Kang Jun-Feng, Feng Song-Jiang, Zou Qian, Li Yan-Jie, Ding Rui-Qiang, Zhong Quan-Jia. Machine learning based method of correcting nonlinear local Lyapunov vectors ensemble forecasting. Acta Physica Sinica,
doi: 10.7498/aps.71.20212260
|
[16] |
Zhang Jia-Wei, Yao Hong-Bo, Zhang Yuan-Zheng, Jiang Wei-Bo, Wu Yong-Hui, Zhang Ya-Ju, Ao Tian-Yong, Zheng Hai-Wu. Self-powered sensing based on triboelectric nanogenerator through machine learning and its application. Acta Physica Sinica,
doi: 10.7498/aps.71.20211632
|
[17] |
Wan Xin-Yang, Zhang Ye-Hui, Lu Shuai-Hua, Wu Yi-Lei, Zhou Qiong-Hua, Wang Jin-Lan. Machine learning accelerated search for new double perovskite oxide photocatalysis. Acta Physica Sinica,
doi: 10.7498/aps.71.20220601
|
[18] |
Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng. Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica,
doi: 10.7498/aps.70.20210831
|
[19] |
Chen Jiang-Zhi, Yang Chen-Wen, Ren Jie. Machine learning based on wave and diffusion physical systems. Acta Physica Sinica,
doi: 10.7498/aps.70.20210879
|
[20] |
Yang Zi-Xin, Gao Zhang-Ran, Sun Xiao-Fan, Cai Hong-Ling, Zhang Feng-Ming, Wu Xiao-Shan. High critical transition temperature of lead-based perovskite ferroelectric crystals: A machine learning study. Acta Physica Sinica,
doi: 10.7498/aps.68.20190942
|