Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

Citation:

LIANG Chuntian, SUN Xiaojun, HUANG Junxi, YANG Haoyu, LI Xiaohua, CAI Chonghai
cstr: 32037.14.aps.74.20250633
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • To describe the projectile-target interaction in heavy-ion collision, the traditional optical model is improved and a corresponding optical model for heavy-ion collisions is established in this work The program APOMHI is developed accordingly. In heavy-ion collisions, the mass of the projectile is comparable to the mass of target nucleus. Therefore, the projectile and target nucleus must be treated equally. The potential field for their relative motion must arise from an equivalent contribution of both nuclei, not just from the target nucleus. Consequently, the angular momentum coupling scheme must adopt L - S coupling, instead of j - j coupling. The projectile spin i and target spin I first couple to form the projectile-target system spin S (which varies between $ \left| {I - i} \right| $ and $ i + I $). Then, the spin S of this system couples with the orbital angular momentum L of relative motion, forming a total angular momentum J . Thus, the radial wave function UlSJ (r) involves three quantum numbers: l , S , and J , while traditional optical model only involves l and j . Furthermore, since the mass of projectile is similar the mass of target, the form of the optical model potential is symmetrical relative to the projectile and target. The projectile nucleus and the target nucleus are still assumed to be spherical, and their excited states are not considered. The projectile may be lighter or heavier than the target, but they cannot be identical particles. By using this optical model program APOMHI, the elastic scattering angular distributions and compound nucleus absorption cross sections for heavy-ion collisions can be calculated. Taking for example a series of heavy-ion collision reactions with 18O as the projectile nucleus, a corresponding set of universal optical potential parameters is obtained by fitting experimental data. The comparisons show that the theoretical calculations generally accord well with the available experimental data. Here, the results for fusion cross-sections and elastic scattering angular distributions using several representative target nuclei (lighter, comparable in mass, heavier, and heavy compared to the projectile nucleus) are taken for example. Specifically, the fusion cross-section results correspond to targets 9Be, 27Al, 63Cu and 150Sm, while the elastic scattering angular distributions correspond to targets 16O, 24Mg, 58Ni, and 120Sn.
      Corresponding author: SUN Xiaojun, sxj0212@gxnu.edu.cn
    • Funds: Project supported by the Open Fund of the Guangxi Key Laboratory of Nuclear Physics and Technology, China (Grant No. NLK2022-03), and the Central Government Guidance Funds for Local Scientific and Technological Development, China (Grant No. Guike ZY22096024).
    [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

    [59]

    [60]

    [61]

    [62]

    [63]

    [64]

    [65]

    [66]

    [67]

    [68]

    [69]

    [70]

    [71]

    [72]

    [73]

    [74]

    [75]

    [76]

    [77]

    [78]

    [79]

    [80]

    [81]

    [82]

  • 各部分光学势 参数 数目
    库仑势 $ {V}_{\mathrm{C}}\left(r\right) $ $ {r}_{\mathrm{C}\mathrm{A}}, {r}_{\mathrm{C}\mathrm{B}} $ 2
    中心势 $ {V}_{\mathrm{c}}\left(r\right) $ $ {r}_{\mathrm{c}\mathrm{A}} $,$ {r}_{\mathrm{c}\mathrm{B}}, {a}_{\mathrm{c}\mathrm{A}}, {a}_{\mathrm{c}\mathrm{B}0}, {a}_{\mathrm{C}\mathrm{B}1} $ 5
    面吸收虚部势 $ {W}_{\mathrm{S}}\left(r\right) $ $ r_{\mathrm{S}\mathrm{A}},r_{\mathrm{S}\mathrm{B}},a_{\mathrm{S}\mathrm{A}},a_{\mathrm{S}\mathrm{B}0},a_{\mathrm{S}\mathrm{B}1} $ 5
    体系收虚部势 $ {W}_{\mathrm{V}}\left(r\right) $ $ {r}_{\mathrm{V}\mathrm{A}}, {r}_{\mathrm{V}\mathrm{B}}, {a}_{\mathrm{V}\mathrm{A}}, {a}_{\mathrm{V}\mathrm{B}0}, {a}_{\mathrm{V}\mathrm{B}1} $ 5
    自旋-轨道实部势 $ {V}_{\mathrm{SO}}(r) $ rRSOA, rRSOB, aRSOA,
    aRSOB0, aRSOB1,$ {\overline{V}_{\mathrm{SO}}} $
    6
    自旋-轨道虚部势 $ {W}_{\mathrm{S}\mathrm{O}}(r) $ rISOA, rISOB, aISOA,
    aISOB0, aISOB1${\overline{W}_{\mathrm{SO}}} $
    6
    中心势强度 $ {\overline{V}_{\mathrm{c}}} $ $ {\overline{V}_{0}, {\overline{V}}_{1}, {\overline{V}}_{2}, {\overline{V}}_{\mathrm{B}}, {\overline{V}}_{4}} $ 5
    面吸收势强度 $ {\overline{W}_{\mathrm{S}}} $ $ {\overline{W}_{\mathrm{S}0}, {\overline{W}}_{\mathrm{S}1}, {\overline{W}}_{\mathrm{S}\mathrm{B}}, {\overline{W}}_{\mathrm{S}2}} $ 4
    体系收势强度 $ {\overline{W}_{\mathrm{V}}} $ $ {\overline{W}_{\mathrm{V}0}, {\overline{W}}_{\mathrm{V}1}, {\overline{W}}_{\mathrm{V}2}} $ 3
    总计 41
    DownLoad: CSV

    各部分光学势 参数 数目
    库仑势 $ {V}_{\mathrm{C}}\left(r\right) $ $ {r}_{\mathrm{C}} $ 1
    0级弥散宽度 $ {a}_{i0} $ $ a_{\mathrm{c}0},a_{\mathrm{S}0},a_{\mathrm{V}0},a_{\mathrm{S}\mathrm{O}0} $ 4
    0级半径参数 $ {r}_{i0} $ $ r_{\mathrm{c}0},r_{\mathrm{S}0},r_{\mathrm{V}0},r_{\mathrm{S}\mathrm{O}0} $ 4
    修正参数 $ \xi $ $ \xi $ 1
    1级弥散宽度 $ a_{\mathrm{\mathit{i}1}} $ $ a_{\mathrm{c}1},a_{\mathrm{S}1},a_{\mathrm{V}1},a_{\mathrm{S}\mathrm{O}1} $ 4
    1级半径参数 $ r_{i1} $ $ r_{\mathrm{c}1},r_{\mathrm{S}1},r_{\mathrm{V}1},r_{\mathrm{S}\mathrm{O}1} $ 4
    中心势强度 $ {\overline{V}}_{\mathrm{c}} $ $ {\overline{V}}_{0}, {\overline{V}}_{1}, {\overline{V}}_{2}, {\overline{V}}_{3}, {\overline{V}}_{4} $ 5
    面吸收势强度 $ {\overline{W}}_{\mathrm{S}} $ $ {\overline{W}}_{\mathrm{S}0}, {\overline{W}}_{\mathrm{S}1}, {\overline{W}}_{\mathrm{S}2}, {\overline{W}}_{\mathrm{S}3} $ 4
    体系收势强度 $ {\overline{W}}_{\mathrm{V}} $ $ {\overline{W}}_{\mathrm{V}0}, {\overline{W}}_{\mathrm{V}1}, {\overline{W}}_{\mathrm{V}2}{, \stackrel{-}{W}}_{\mathrm{V}3} $ 4
    自旋-轨道实部
    势强度
    $ {\overline{V}}_{\mathrm{S}\mathrm{O}} $ VSO 1
    自旋-轨道虚部
    势强度
    $ {\overline{W}}_{\mathrm{S}\mathrm{O}} $ WSO 1
    总计 33
    DownLoad: CSV

    序号 靶核 熔合截面 弹性散射角分布
    EL/MeV 文献 EL/MeV 文献
    1 9Be 7.0—21.0 [31]
    2 10B 22.0—63.0 [32]
    3 11B 21.0—65.0 [32]
    4 13C 105.0 [33]
    5 16O 13.9—85.0 [34,35] 85.0 [36]
    6 24Mg 32.0—72.0 [37] 50.0 [38]
    7 27Al 28.0—72.0 [39,40]
    8 28Si 34.0—72.0 [39]
    9 44Ca 27.0—60.0 [41]
    10 58Ni 35.0—64.0 [42,43] 35.1, 36.0, 37.1, 38.0, 46.0, 63.0 [4446]
    11 60Ni 40.0—63.0 [43] 34.5, 35.5, 37.1, 38.0, 63.0 [44,46]
    12 64Ni 38.5—64.0 [43]
    13 63Cu 40.0—65.0 [47]
    14 65Cu 40.0—65.0 [47]
    15 64Zn 49.0 [48]
    16 74Ge 37.0—61.0 [49]
    17 90Zr 90.0 [50]
    18 92Mo 50.0—65.0 [51]
    19 112Sn 60.0 [52]
    20 116Sn 67.0 [53]
    21 148Nd 61.8—77.0 [54]
    22 150Sm 65.0—125.0 [55,56]
    23 174Yb 83.0 [57]
    24 188Os 80.0—140.0 [58]
    25 192Os 79.0—124.0 [55,56]
    26 194Pt 77.6—106.0 [59]
    27 197Au 77.6—102.0 [60,61]
    28 208Pb 75.0—102.0 [62]
    29 7Li 114 [63]
    30 12C 15.0—216 [6469] 66.2, 85.0, 100.0, 120.0, 216.0 [70,71]
    31 120Sn 60.0, 66.7, 72.0 [46,52,53]
    32 14C 105.0 [72]
    33 61Ni 33.5—52.6 [73]
    DownLoad: CSV

    序号参数数值序号参数数值
    1$ {\overline{V}}_{0} $451.0000000022$ {a}_{\mathrm{R}\mathrm{S}\mathrm{O}\mathrm{B}0} $0.06584537
    2$ {\overline{V}}_{1} $15.3000000023$ {a}_{\mathrm{I}\mathrm{S}\mathrm{O}\mathrm{A}} $0.48015487
    3$ {\overline{V}}_{2} $0.4800000024$ {a}_{\mathrm{I}\mathrm{S}\mathrm{O}\mathrm{B}0} $0.01976280
    4$ {\overline{V}}_{\mathrm{B}} $0.0000000025$ {r}_{\mathrm{c}\mathrm{A}} $1.03999996
    5$ {\overline{V}}_{4} $18.7319297826$ {r}_{\mathrm{c}\mathrm{B}} $1.04000000
    6$ {\overline{W}}_{\mathrm{S}0} $30.0000000027$ {r}_{\mathrm{S}\mathrm{A}} $1.84839511
    7$ {\overline{W}}_{\mathrm{S}1} $–0.9900000028$ {r}_{\mathrm{S}\mathrm{B}} $1.46500000
    8$ {\overline{W}}_{\mathrm{S}\mathrm{B}} $0.0000000029$ {r}_{\mathrm{V}\mathrm{A}} $1.93000000
    9$ {\overline{W}}_{\mathrm{S}2} $0.0000000030$ {r}_{\mathrm{V}\mathrm{B}} $1.47000000
    10$ {\overline{W}}_{\mathrm{V}0} $10.0000000031$ {r}_{\mathrm{R}\mathrm{S}\mathrm{O}\mathrm{A}} $1.04999995
    11$ {\overline{W}}_{\mathrm{V}1} $13.0000000032$ {r}_{\mathrm{R}\mathrm{S}\mathrm{O}\mathrm{B}} $1.55366528
    12$ {\overline{W}}_{\mathrm{V}2} $–0.0120000033$ {r}_{\mathrm{I}\mathrm{S}\mathrm{O}\mathrm{A}} $1.05001342
    13$ {\overline{V}}_{\mathrm{S}\mathrm{O}} $80.0000000034$ {r}_{\mathrm{I}\mathrm{S}\mathrm{O}\mathrm{B}} $1.75388050
    14$ {\overline{W}}_{\mathrm{S}\mathrm{O}} $25.0000000035$ {r}_{\mathrm{C}\mathrm{A}} $1.25000000
    15$ {a}_{\mathrm{c}\mathrm{A}} $0.8500000036$ {r}_{\mathrm{C}\mathrm{B}} $1.25000000
    16$ {a}_{\mathrm{c}\mathrm{B}0} $0.0822956637$ {a}_{\mathrm{c}\mathrm{B}1} $0.24493097
    17$ {a}_{\mathrm{S}\mathrm{A}} $0.3510782138$ {a}_{\mathrm{S}\mathrm{B}1} $0.35000000
    18$ {a}_{\mathrm{S}\mathrm{B}0} $0.3477544839$ {a}_{\mathrm{V}\mathrm{B}1} $0.09000000
    19$ {a}_{\mathrm{V}\mathrm{A}} $0.3962688140$ {a}_{\mathrm{R}\mathrm{S}\mathrm{O}\mathrm{B}1} $0.11783799
    20$ {a}_{\mathrm{V}\mathrm{B}0} $0.3833678141$ {a}_{\mathrm{I}\mathrm{S}\mathrm{O}\mathrm{B}1} $0.07000000
    21$ {a}_{\mathrm{R}\mathrm{S}\mathrm{O}\mathrm{A}} $0.79141617
    DownLoad: CSV

    序号参数数值序号参数数值
    1$ {\overline{V}}_{0} $1300.0000000018$ {a}_{\mathrm{V}0} $0.64614904
    2$ {\overline{V}}_{1} $9.3295412119$ {a}_{\mathrm{S}\mathrm{O}0} $0.55000001
    3$ {\overline{V}}_{2} $–0.0331055720$ {r}_{\mathrm{R}0} $1.20000005
    4$ {\overline{V}}_{3} $–45.0000000021$ {r}_{\mathrm{S}0} $1.24034297
    5$ {\overline{V}}_{4} $34.9734268222$ {r}_{\mathrm{V}0} $1.20000005
    6$ {\overline{W}}_{\mathrm{S}0} $27.7965812723$ {r}_{\mathrm{S}\mathrm{O}0} $1.25000000
    7$ {\overline{W}}_{\mathrm{S}1} $–0.8797226024$ {r}_{\mathrm{C}} $1.25000000
    8$ {\overline{W}}_{\mathrm{S}2} $1.8755728025$ \xi $0.11376333
    9$ {\overline{W}}_{\mathrm{S}3} $1.0761344426$ {a}_{\mathrm{R}1} $0.02999442
    10$ {\overline{W}}_{\mathrm{V}0} $65.9998703027$ {a}_{\mathrm{S}1} $0.02947382
    11$ {\overline{W}}_{\mathrm{V}1} $5.4015379028$ {a}_{\mathrm{V}1} $–0.03926823
    12$ {\overline{W}}_{\mathrm{V}2} $0.0888160029$ {a}_{\mathrm{S}\mathrm{O}1} $0.00000000
    13$ {\overline{W}}_{\mathrm{V}3} $–5.0999999030$ {r}_{\mathrm{R}1} $–0.00313194
    14$ {\overline{V}}_{\mathrm{S}\mathrm{O}0} $10.0000000031$ {r}_{\mathrm{S}1} $0.18612149
    15$ {\overline{W}}_{\mathrm{S}\mathrm{O}0} $1.0000000032$ {r}_{\mathrm{V}1} $0.01397228
    16$ {a}_{\mathrm{R}0} $0.5215224633$ {r}_{\mathrm{S}\mathrm{O}1} $0.00000000
    17$ {a}_{\mathrm{S}0} $0.34999999
    DownLoad: CSV

    靶核 APOMI SPOOA
    $ \chi _{\text{f}}^2 $ $ \chi _{\text{e}}^{2} $ $ {\chi ^2} $ $ \chi _{\text{f}}^{2} $ $ \chi _{\text{e}}^{2} $ $ {\chi ^2} $
    9Be 1.39 1.39 2.33 2.33
    10B 2.17 2.17 2.89 2.89
    11B 4.02 4.02 4.51 4.51
    13C 286.27 286.27 467.75 467.75
    16O 21.00 162.44 91.72 32.16 147.74 89.95
    24Mg 3.11 9.74 6.43 0.38 97.82 49.10
    27Al 17.60 17.60 16.52 16.52
    28Si 15.43 15.43 7.72 7.72
    44Ca 12.05 12.05 6.10 6.10
    58Ni 88.30 646.73 367.51 97.93 2046.43 1072.18
    60Ni 21.25 1404.33 712.79 35.38 3194.35 1614.86
    64Ni 43.28 43.28 42.01 42.01
    63Cu 5.06 5.06 4.42 4.42
    65Cu 3.90 3.90 5.24 5.24
    64Zn 120.98 120.98 579.60 579.60
    74Ge 2165.57 2165.57 2468.20 2468.20
    90Zr 498.31 498.31 69.48 69.48
    92Mo 10.45 10.45 8.45 8.45
    112Sn 74.11 74.11 88.79 88.79
    116Sn 403.03 403.03 1026.08 1026.08
    148Nd 42.07 42.07 21.85 21.85
    150Sm 9.20 9.20 5.31 5.31
    174Yb 12.57 12.57 9.34 9.34
    188Os 80.49 80.49 1422.2 1422.20
    192Os 13.57 13.57 3.84 3.84
    194Pt 26.65 26.65 30.66 30.66
    197Au 32.45 32.45 15.85 15.85
    208Pb 33.29 33.29 14.77 14.77
    总(以上多核综合) 120.56 361.85 181.87 193.12 772.73 326.79
    7Li 166.49 166.49 85.95 85.95
    12C 42.23 32018.88 16030.55 42.54 6563.20 3302.87
    120Sn 229.43 229.43 354.57 354.57
    14C 21.35 21.35 30.14 30.14
    61Ni 14.08 14.08 137.80 137.80
    DownLoad: CSV

    靶核 APOMHI(单核) SOOPA(单核)
    $ \chi _{\text{f}}^{2} $ $ \chi _{\text{e}}^{2} $ $ {\chi ^2} $ $ \chi _{\text{f}}^{2} $ $ \chi _{\text{e}}^{2} $ $ {\chi ^2} $
    7Li 5.79 5.79 5.86 5.86
    12C 84.23 1437.90 761.07 109.70 2501.96 1305.83
    120Sn 24.84 24.84 15.87 15.87
    DownLoad: CSV
    Baidu
  • [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

    [59]

    [60]

    [61]

    [62]

    [63]

    [64]

    [65]

    [66]

    [67]

    [68]

    [69]

    [70]

    [71]

    [72]

    [73]

    [74]

    [75]

    [76]

    [77]

    [78]

    [79]

    [80]

    [81]

    [82]

  • [1] DU Wenqing, ZHAO Xiuniao. Research on Lane-consistent dispersive optical-model potential for 208Pb. Acta Physica Sinica, 2025, 74(5): 052401. doi: 10.7498/aps.74.20241273
    [2] Hou Yan-Jie, Hu Chun-Guang, Zhang Lei, Chen Xue-Jiao, Fu Xing, Hu Xiao-Tang. Characterization of effective conductive layer of nano organic thin film using reflectance spectroscopy. Acta Physica Sinica, 2016, 65(20): 200201. doi: 10.7498/aps.65.200201
    [3] Li Zhao-Guo, Zhang Shuai, Song Feng-Qi. Universal conductance fluctuations of topological insulators. Acta Physica Sinica, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [4] You Yang-Ming, Wang Bing-Zhang, Wang Ji-You. Optical model potential of antiproton atoms with nuclear polarization correction. Acta Physica Sinica, 2012, 61(20): 202401. doi: 10.7498/aps.61.202401
    [5] Lu Gong-Ru, Li Xin-Qiang, Li Yan-Min, Su Fang. Study of neutral Bs mixing in a family non-universal Z' model. Acta Physica Sinica, 2012, 61(24): 241301. doi: 10.7498/aps.61.241301
    [6] Lin Qing. Linear optical realization of universal unambiguous discrimination of quantum state. Acta Physica Sinica, 2009, 58(9): 5978-5982. doi: 10.7498/aps.58.5978
    [7] Guo Zeng-Yuan, Cao Bing-Yang. A general heat conduction law based on the concept of motion of thermal mass. Acta Physica Sinica, 2008, 57(7): 4273-4281. doi: 10.7498/aps.57.4273
    [8] Li Yan-Ling, Feng Jian, Meng Xiang-Guo, Liang Bao-Long. Universal quantum teleflipping and telecloning of qubit. Acta Physica Sinica, 2007, 56(10): 5591-5596. doi: 10.7498/aps.56.5591
    [9] Universal telecloning of quantum entangled states. Acta Physica Sinica, 2007, 56(12): 6797-6802. doi: 10.7498/aps.56.6797
    [10] Ren Hao, Gu De-Wei, Pan Zheng-Quan, Ying He-Ping. A study on critical universality of the random-bond Potts models with self-dual quenched randomness. Acta Physica Sinica, 2004, 53(1): 265-271. doi: 10.7498/aps.53.265
    [11] He Mao-Gang, Liu Zhi-Gang. . Acta Physica Sinica, 2002, 51(5): 1004-1010. doi: 10.7498/aps.51.1004
    [12] Deng Wen-Ji. . Acta Physica Sinica, 2002, 51(6): 1171-1174. doi: 10.7498/aps.51.1171
    [13] ZHANG HU-YONG, MA YU-GANG, SU QIAN-MIN, SHEN WEN-QING, CAI XIANG-ZHOU, FANG DE-QING, HU PENG-YUN, HAN DING-DING. ISOSPIN EFFECTS ON THE LIGHT PARTICLES IN INTERMEDIATE ENERGY HEAVY ION COLLISIONS. Acta Physica Sinica, 2001, 50(2): 193-197. doi: 10.7498/aps.50.193
    [14] XU XIAO-HU, SHEN JIAN. A PHENOMELOGICAL MODEL FOR FERROELECTRIC SUPERLATTICES. Acta Physica Sinica, 1999, 48(11): 2142-2145. doi: 10.7498/aps.48.2142
    [15] SUN FENG-JIU. REPRESENTATION TRANSFORMATION AND THE GENERAL METHOD FOR SOLVING OPTICAL RELATION EQUATIONS IN OPERATOR OPTICS. Acta Physica Sinica, 1989, 38(4): 653-658. doi: 10.7498/aps.38.653
    [16] OU FA, CAI YONG-QIANG. THE GENERALIZED DYNAMICAL EQUATION OF OPTICAL BISTABILITY AND LASER AND ITS STABILITY ANALYSIS. Acta Physica Sinica, 1988, 37(2): 330-334. doi: 10.7498/aps.37.330
    [17] WU ZI-YU, WANG KE-LIN, LAN HUI-BIN, ZHANG ZHENG-GANG, XIAN DING-CHANG. A PHENOMENOLOGICAL MODEL FOR 0- MESON (Ⅱ)——THE ELECTROMAGNETIC FORM FACTOR. Acta Physica Sinica, 1987, 36(12): 1618-1623. doi: 10.7498/aps.36.1618
    [18] Wu Zi-yu;Lan Hui-bin; Wang Ke-lin; Liu Yao-yan. A PHENOMENOLOGICAL MODEL FOR O- MESON (I). Acta Physica Sinica, 1987, 36(8): 1048-1055. doi: 10.7498/aps.36.1048
    [19] WANG GUANG-RUI, CHEN SHI-GANG. UNIVERSAL CONSTANTS AND UNIVERSAL FUNCTIONS OF PERIQO-N-TUPLING SEQUENCES IN ONE-DIMENSIONAL UNIMODAL MAPPINGS. Acta Physica Sinica, 1986, 35(1): 58-65. doi: 10.7498/aps.35.58
    [20] WANG GUANG-RUI, ZHANG SHU-YU, HAO BAI-LIN. U-SEQUENCE OF PERIODIC SOLUTIONS IN THE FORCED BRUSSELATOR. Acta Physica Sinica, 1984, 33(7): 1008-1016. doi: 10.7498/aps.33.1008
Metrics
  • Abstract views:  1568
  • PDF Downloads:  26
  • Cited By: 0
Publishing process
  • Received Date:  15 May 2025
  • Accepted Date:  08 July 2025
  • Available Online:  24 July 2025
  • Published Online:  20 September 2025
    返回文章
    返回
    Baidu
    map