Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

Citation:

WANG Tao, SHI Jiaxin, XUE Wuhong, XU Xiaohong
cstr: 32037.14.aps.74.20251177
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Two-dimensional (2D) magnetic materials refer to nanomaterials with an extremely thin thickness that can maintain long-range magnetic order. These materials exhibit significant magnetic anisotropy, and due to the quantum confinement effect and high specific surface area, their electronic band structures and surface states undergo remarkable changes. As a result, they possess rich and tunable magnetic properties, showing great application potential in the field of spintronics. The 2D magnetic materials include layered materials, where layers are stacked by weak van der Waals forces, and non-layered materials, which are bonded via chemical bonds in all three-dimensional directions. Currently, most of researches focus on 2D layered materials, but their Curie temperatures are generally much lower than room temperature, and they are always unstable when exposed to air. In contrast, the non-layered structure enhances the structural stability of the materials, and the abundant surface dangling bonds increase the possibility of modifying their physical properties. Such materials are attracting increasing attention, and significant progress has been made in their synthesis and applications. This review first systematically summarizes various preparation methods for 2D non-layered magnetic materials, including but not limited to ultrasound-assisted exfoliation, molecular beam epitaxy, and chemical vapor deposition. Meanwhile, it systematically reviews the 2D non-layered intrinsic magnetic materials obtained in various types of materials in the past five years, as well as a series of novel physical phenomena emerging under the ultrathin limit, such as thickness-dependent magnetic reconstruction dominated by quantum confinement effects and planar topological spin textures induced by 2D structures. Furthermore, it also discusses the critical role played by theoretical calculations in predicting new materials through high-throughput screening, revealing microscopic mechanisms by analyzing magnetic interactions, as well as some important methods of modifying magnetism. Finally, from the perspectives of material preparation, physical mechanisms, device fabrication, and theoretical calculations, the current challenges in the field are summarized, and the application potential and development directions of 2D non-layered magnetic materials in spintronic devices are prospected. This review aims to provide comprehensive references and scientific perspective for researchers engaged in this field, thereby promoting further exploration of the novel magnetic properties of 2D non-layered magnetic materials and their applications in spintronic devices.
      Corresponding author: XUE Wuhong, xuewuhong@sxnu.edu.cn ; XU Xiaohong, xuxh@sxnu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2024YFA1410200), the National Natural Science Foundation of China (Grant Nos. U24A6002, 12174237, 52371245, 12241403), the Natural Science Foundation of Shanxi Province, China (Grant No. 202303021224009), and the Higher Educational Institutions Young Academic Leaders Program of Shanxi Province, China (Grant No. 2024Q015).
    [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

    [59]

    [60]

    [61]

    [62]

    [63]

    [64]

    [65]

    [66]

    [67]

    [68]

    [69]

    [70]

    [71]

    [72]

    [73]

    [74]

    [75]

    [76]

    [77]

    [78]

    [79]

    [80]

    [81]

    [82]

    [83]

    [84]

    [85]

    [86]

    [87]

    [88]

    [89]

    [90]

    [91]

  • 材料 分类 制备方法 厚度/尺寸 磁性 居里(奈尔)
    温度/K
    空气
    稳定性
    发表
    年份
    Cr[70] 单元素金属 电子束驱动的
    原位还原法
    单原子层/8 nm2 反铁磁性 2020
    Cr2Te3[71] 金属硫族
    化合物
    盐辅助CVD法 1.6—7.1 nm
    />0.93 mm
    铁磁性 ~280
    六方FeTe[45] 金属硫族
    化合物
    直接CVD法 2.8 nm/>60 μm 铁磁性 170(4 nm)—
    220(30 nm)
    0.5 h
    MnP[52] 其他 直接CVD法 30—50 nm
    /数十微米
    铁磁性 >303
    六方FeTe[72] 金属硫族
    化合物
    直接CVD法 平均~3.7 nm
    /~120 μm
    铁磁性 ~300 2021
    γ-Fe2O3[34] 金属氧化物 Co催化的CVD法 4—9 nm
    />20 μm
    亚铁磁性 >300 >3 m
    VO2[67] 金属氧化物 应变工程
    诱导二维化
    4.8 nm
    /平均~200 nm
    铁磁性 >300 >3 m
    Fe7Se8[43] 金属硫族
    化合物
    空间限域CVD法 3.5—45 nm
    />20 μm
    亚铁磁性 >300 K >1 m
    MnSe2[14] 金属硫族
    化合物
    软化学刻蚀法 (21.4±0.7) nm
    /(2.3±0.1) μm
    铁磁性 ~320 K
    α-MnSe[73] 金属硫族
    化合物
    盐辅助CVD法 5.63—7.82 nm
    /19.5—42.6 μm
    反铁磁性 ~160 K
    SrRu2O6[39] 金属氧化物 超声辅助剥离法 ~1.3—2.2 nm
    /数十纳米-数百纳米
    反铁磁性
    CrTe[74] 金属硫族
    化合物
    直接CVD法
    +超声辅助剥离法
    0.8—50 nm
    /数微米-数十微米
    铁磁性 ~367 K >1 m
    ε-Fe2O3[30] 金属氧化物 空间限域CVD法 4.0—44.6 nm 亚铁磁性 ~291 K >3 m 2022
    Fe[51] 单元素金属 空间限域CVD法 4.0—37.4 nm
    /数微米-数十微米
    铁磁性 >300 K >6 d
    Cr2X3
    (X = S, Se, Te)[22]
    金属硫族
    化合物
    衬底预处理的
    CVD法
    3.5 nm/30 μm(Cr2S3),
    1.6 nm/30 μm(Cr2Se3),
    2.3 nm/200 μm
    (Cr2Te3)
    亚铁磁性(Cr2S3)、
    自旋玻璃态(Cr2Se3)、
    铁磁性(Cr2Te3)
    ~170 K(Cr2Te3)
    CoFe2O4[38] 金属氧化物 分子筛辅助的
    CVD法
    2—4 nm/数十微米 亚铁磁性 >390 K >1 m
    FeSe[75] 金属硫族
    化合物
    溶剂热法 2.90—2.95 nm
    /1.0—2.2 μm
    反铁磁性 ~553 K >1 m
    Cr5Te8/vdW
    垂直异质结[76]
    金属硫族
    化合物
    直接CVD法 1.6—52.1 nm
    /~144 μm
    铁磁性 ~165 K
    (7.2 nm)
    >1 m
    Fe5Se8, Fe3Se4[44] 金属硫族
    化合物
    直接CVD法 —/0.5—4 μm
    (Fe5Se8),
    8 nm/20 μm(Fe3Se4)
    铁磁性(Fe5Se8) ~300 K >6 h(酸性
    溶液中)
    2023
    γ-Fe2O3[33] 金属氧化物 空间限域CVD法 10—47 nm
    /数百纳米-数十微米
    亚铁磁性 >4 m
    Ni掺杂的CoO[65] 金属氧化物 直接CVD法 6.1 nm
    /11.4 μm
    铁磁性 ~180 K
    Fe7S8[77] 金属硫族
    化合物
    分子筛辅助的
    CVD法
    2.0—22.6 nm
    /2—22 μm
    亚铁磁性 >300 K
    FeS[42] 金属硫族
    化合物
    直接CVD法 6.1—30.6 nm
    (SiO2/Si衬底)/—
    0.6 nm
    (WSe2衬底)/—
    亚铁磁性 >300 K
    CuCrSe2[16] 金属硫族
    化合物
    电化学剥离法 1.49 nm/— 铁磁性(单层和
    偶数层)、
    反铁磁性(奇数层)
    ~120 K
    α-MnSe/Cr2Se3
    横向和纵向
    异质结[66]
    金属硫族
    化合物
    直接CVD法 1.1 nm(横向异质结)
    5 nm(纵向异质结)/—
    反铁磁(α- MnSe),
    铁磁性(Cr2Se3)
    >7 d
    (α-MnSe)
    Cr2Ge2Te6@
    Cr2Te3[69]
    金属硫族
    化合物
    自然氧化
    形成二次相
    铁磁性 ~160 K
    Fe3O4[35] 金属氧化物 分子筛辅助的
    CVD法
    1.9—38.2 nm
    /毫米级薄膜
    亚铁磁性 ~350 K >5 m
    Fe3O4[36] 金属氧化物 直接CVD法 0.5—25 nm
    /数微米-数十微米
    亚铁磁性 >850 K >2 y 2024
    Cr2S3[21] 金属硫族
    化合物
    界面调制的CVD 1.8 nm/1英寸薄膜 铁磁性 ~200 K >7 m
    Fe3O4[37] 金属氧化物 直接CVD法 3—488 nm
    /数微米-数十微米
    亚铁磁性 >2 y
    ε-Fe2O3[19] 金属氧化物 空间限域CVD法 5.5—77.4 nm/165 μm 亚铁磁性 800 K >1 m
    MnTe[82] 金属硫族
    化合物
    超声辅助剥离法 2—7 nm/数百纳米 反铁磁性(单层),
    铁磁性(双层至四层),
    反铁磁性(厚度超过5 nm时)
    MnSe2[47] 金属硫族
    化合物
    溶剂热法 4—6 nm
    /数十纳米-数百纳米
    铁磁性 ~309 K
    Cr5Te8[40] 金属硫族
    化合物
    空间限域CVD法 0.66 nm/450 μm 铁磁性 ~176 K >10 d
    AgCrS2[48] 金属硫族
    化合物
    电化学剥离法 1.25 nm/数十微米 铁磁性 ~115 K
    Cr2S3[78] 金属硫族
    化合物
    超声辅助剥离法 3.4 nm
    /几纳米-几微米
    反铁磁性 >1 m
    (在NMP中)
    γ-Ga2O3[68] 金属氧化物 应变工程
    诱导二维化
    (3.7±0.2) nm/数百纳米 铁磁性 ~300 K
    FeSb[17] 其他材料 分子束外延法 1 nm/数十纳米 铁磁性 >390 K
    ε-Fe2O3[31] 金属氧化物 空间限域CVD法 6.6—42.6 nm
    /2.9—16.7 μm
    亚铁磁性 >10 m 2025
    Cr2Se3[18] 金属硫族
    化合物
    直接CVD法 4—22 nm
    /数微米-数十微米
    反铁磁性 ~46 K
    CuFeS2[20] 金属硫族
    化合物
    盐辅助CVD法 ~9 nm
    /数微米-数十微米
    反铁磁性 ~(473.0±0.4) K >14 d
    CoS2, Co3S4,
    CoS[79]
    金属硫族
    化合物
    直接CVD法 10—15 nm/2—25 μm 铁磁性(CoS2) ~123 K
    NiSe[46] 金属硫族
    化合物
    直接CVD法 6—43 nm/7—70 μm 铁磁性 >400 K
    Cr5Te8[80] 金属硫族
    化合物
    直接CVD法 4.8—12 nm/~0.19 mm 铁磁性 ~172 K
    Cr2Se3[41] 金属硫族
    化合物
    分子束外延法 单层/— 铁磁性 ~225 K
    CuFeSeS[81] 二元金属
    硫族化合物
    溶剂热法 20—45 nm
    /平均约2.6 μm
    铁磁性 ~380 K >28 d
    DownLoad: CSV
    Baidu
  • [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

    [59]

    [60]

    [61]

    [62]

    [63]

    [64]

    [65]

    [66]

    [67]

    [68]

    [69]

    [70]

    [71]

    [72]

    [73]

    [74]

    [75]

    [76]

    [77]

    [78]

    [79]

    [80]

    [81]

    [82]

    [83]

    [84]

    [85]

    [86]

    [87]

    [88]

    [89]

    [90]

    [91]

  • [1] ZHANG Yu, MENG Gengchen, ZHAO Zhiyuan, LEI Na, WEI Dahai. Dzyaloshinskii-Moriya Interaction in Rare-Earth Transition Metal Ferrimagnetic Materials and Spintronic Applications. Acta Physica Sinica, 2026, 75(1): . doi: 10.7498/aps.75.20251455
    [2] Xia Yong-Shun, Yang Xiao-Kuo, Dou Shu-Qing, Cui Huan-Qing, Wei Bo, Liang Bu-Jia, Yan Xu. Ultra-low power magneto-elastic analog-to-digital converter based on magnetic tunnel junctions and bicomponent multiferroic nanomagnet. Acta Physica Sinica, 2024, 73(13): 137502. doi: 10.7498/aps.73.20240129
    [3] Mi Meng-Juan, Yu Li-Xuan, Xiao Han, Lü Bing-Bing, Wang Yi-Lin. Tuning magnetic properties of two-dimensional antiferromagnetic MPX3 by organic cations intercalation. Acta Physica Sinica, 2024, 73(5): 057501. doi: 10.7498/aps.73.20232010
    [4] Xiong Yi-Nong, Wu Chuang-Wen, Ren Chuan-Tong, Meng De-Quan, Chen Shi-Wei, Liang Shi-Heng. Research progress of spin orbit torque of two-dimensional magnetic materials. Acta Physica Sinica, 2024, 73(1): 017502. doi: 10.7498/aps.73.20231244
    [5] Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong. Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets. Acta Physica Sinica, 2023, 72(24): 247501. doi: 10.7498/aps.72.20231229
    [6] Liu Nan-Shu, Wang Cong, Ji Wei. Recent research advances in two-dimensional magnetic materials. Acta Physica Sinica, 2022, 71(12): 127504. doi: 10.7498/aps.71.20220301
    [7] Zhang Song-Ge, Chen Yu-Tong, Wang Ning, Chai Yang, Long Gen, Zhang Guang-Yu. Probe and manipulation of magnetism of two-dimensional CrI3 crystal. Acta Physica Sinica, 2021, 70(12): 127504. doi: 10.7498/aps.70.20202197
    [8] Yi En-Kui, Wang Bin, Shen Han, Shen Bing. Properties of axion insulator candidate layered Eu1–xCaxIn2As2. Acta Physica Sinica, 2021, 70(12): 127502. doi: 10.7498/aps.70.20210042
    [9] Wang Hai-Yu, Liu Ying-Jie, Xun Lu-Lu, Li Jing, Yang Qing, Tian Qi-Yun, Nie Tian-Xiao, Zhao Wei-Sheng. Research progress of preparation of large-scale two-dimensional magnetic materials and manipulation of Curie temperature. Acta Physica Sinica, 2021, 70(12): 127301. doi: 10.7498/aps.70.20210223
    [10] Xiao Han, Mi Meng-Juan, Wang Yi-Lin. Recent development in two-dimensional magnetic materials and multi-field control of magnetism. Acta Physica Sinica, 2021, 70(12): 127503. doi: 10.7498/aps.70.20202204
    [11] Jiang Xiao-Hong, Qin Si-Chen, Xing Zi-Yue, Zou Xing-Yu, Deng Yi-Fan, Wang Wei, Wang Lin. Study on physical properties and magnetism controlling of two-dimensional magnetic materials. Acta Physica Sinica, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [12] Wang Peng-Cheng, Cao Yi, Xie Hong-Guang, Yin Yao, Wang Wei, Wang Ze-Ying, Ma Xin-Chen, Wang Lin, Huang Wei. Magnetic properties of layered chiral topological magnetic material Cr1/3NbS2. Acta Physica Sinica, 2020, 69(11): 117501. doi: 10.7498/aps.69.20200007
    [13] Meng Kang-Kang, Zhao Xu-Peng, Miao Jun, Xu Xiao-Guang, Zhao Jian-Hua, Jiang Yong. Topological Hall effect in ferromagnetic/non-ferromagnetic metals heterojunctions. Acta Physica Sinica, 2018, 67(13): 131202. doi: 10.7498/aps.67.20180369
    [14] Zhao Wei-Sheng, Huang Yang-Qi, Zhang Xue-Ying, Kang Wang, Lei Na, Zhang You-Guang. Overview and advances in skyrmionics. Acta Physica Sinica, 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [15] Xiao Jia-Xing, Lu Jun, Zhu Li-Jun, Zhao Jian-Hua. Perpendicular magnetic properties of ultrathin L10-Mn1.67Ga films grown by molecular-beam epitaxy. Acta Physica Sinica, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [16] Xu Jian-Wei, Wang Shun-Jin. Relativistic mean field theory of electron and first, second-order Rashba effects. Acta Physica Sinica, 2009, 58(7): 4878-4882. doi: 10.7498/aps.58.4878
    [17] Ren Jun-Feng, Zhang Yu-Bin, Xie Shi-Jie. Current spin polarization in ferromagnetic/organic semiconductor/ferromagnetic system. Acta Physica Sinica, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [18] Ren Jun-Feng, Fu Ji-Yong, Liu De-Sheng, Xie Shi-Jie. Diffusion theory of spin injection into organic polymers*. Acta Physica Sinica, 2004, 53(11): 3814-3817. doi: 10.7498/aps.53.3814
    [19] Sun Feng-Wei, Deng Li, Shou Qian, Liu Lu-Ning, Wen Jin-Hui, Lai Tian-Shu, Lin Wei-Zhu. Femtosecond spectral studies of electron spin injection and relaxation in AlGaAs / GaAs MQW. Acta Physica Sinica, 2004, 53(9): 3196-3199. doi: 10.7498/aps.53.3196
    [20] Qin Jian-Hua, Guo Yong, Chen Xin-Yi, Gu Bing-Lin. A study on spin-polarized transport properties in magnetic-electric barrier st ructures. Acta Physica Sinica, 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
Metrics
  • Abstract views:  1573
  • PDF Downloads:  98
  • Cited By: 0
Publishing process
  • Received Date:  30 August 2025
  • Accepted Date:  02 October 2025
  • Available Online:  10 October 2025
  • Published Online:  20 November 2025
    返回文章
    返回
    Baidu
    map