Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

Citation:

ZHANG Zhanling, ZHU Ximing, WANG Lu, ZHAO Yu, YANG Xihong
cstr: 32037.14.aps.74.20251182
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Octafluorocyclobutane (C4F8)-based fluorocarbon plasmas have become a cornerstone of nanometre-scale etching and deposition in advanced semiconductor manufacturing, owing to their tunable fluorine-to-carbon (F/C) ratio, high density of reactive radicals, and superior material selectivity. In high-aspect-ratio pattern transfer, optical emission spectroscopy (OES) enables in-situ monitoring by correlating the density of morphology-determining radicals with their characteristic spectral signatures, thereby providing a viable pathway for the simultaneously optimizing pattern fidelity and process yield. A predictive plasma model that integrates kinetic simulation with spectroscopic analysis is therefore indispensable. In this study, a C4F8/O2/Ar plasma model tailored for on-line emission-spectroscopy analysis is established. First, the comprehensive reaction mechanism is refined through a systematic investigation of C4F8 dissociation pathways and the oxidation kinetics of fluorocarbon radicals. Subsequently, the radiative-collisional processes for the excited states of F, CF, CF2, CO, Ar and O are incorporated, establishing an explicit linkage between spectral features and radical densities. Under representative inductively coupled plasma (ICP) discharge conditions, the spatiotemporal evolution of the aforementioned active species is analyzed and validated against experimental data. Kinetic back-tracking is employed to elucidate the formation and loss mechanisms of fluorocarbon radicals and ions, and potential sources of modelling uncertainty are discussed. This model has promising potential for application in real-time OES monitoring during actual etching processes.
      Corresponding author: ZHU Ximing, zhuximing@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U22B2094).
    [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

  • 编号 公式 注释
    E1 $\begin{array}{cc}\dfrac{{{\text{d}}{n_k}}}{{{\text{d}}t}} = \displaystyle\sum\nolimits_V {R_V^ + } (k) - \displaystyle\sum\nolimits_V {R_V^ - (k)} \\\qquad + \displaystyle\sum\nolimits_S {R_S^ + (k)} - \displaystyle\sum\nolimits_S {R_S^ - (k)} = 0 \end{array}$ $ {n_k} $: 物质 k 密度; $ R_V^ + (k) $: 物质 k 气相生成速率;
    $ R_V^ - (k) $: 物质 k 气相损失速率; $ R_S^ + (k) $: 物质 k 表面生成速率;
    $ R_S^ - (k) $: 物质 k 表面损失速率
    E2 $ {R_V} = {K_V}\displaystyle\sum\nolimits_v {{n_v}};\;\; R_V^{{\text{rad}}} = A {n_v} $ $ {K_V} $: 气相反应速率系数; $ {n_v} $: 气相反应物密度;
    $ R_V^{{\text{rad}}} $: 气相自发辐射速率; A: 爱因斯坦系数
    E3 $\begin{array} {cc} {K_V} = a T_{\text{e}}^b\exp \left( { - {c}/{{{T_{\text{e}}}}}} \right) ; \\ K_V^{{\text{exc}}} = \displaystyle\int_0^\infty {\sigma ({E_{\text{e}}})\sqrt {\dfrac{{2{E_{\text{e}}}}}{{{m_{\text{e}}}}}} f({E_{\text{e}}}){\text{d}}{E_{\text{e}}}} \end{array} $ $ {T_e} $: 电子温度; a, b, c : Arrhenius公式参数;
    $ K_V^{{\text{exc}}} $: 气相激发反应速率系数; Ee: 电子能量; me: 电子质量;
    $ \sigma ({E_{\text{e}}}) $: 激发截面; $ f({E_{\text{e}}}) $: 电子能量分布
    E4 $ {R_{\text{S}}} = {K_{\text{S}}}{n_{\text{s}}} $ $ {n_{\text{s}}} $: 表面损失物质密度
    E5 $ K_S^{\text{n}} = {\left[ {\dfrac{{{\varLambda ^2}}}{{{D_{\text{n}}}}} + \dfrac{{2 V(2 - \gamma )}}{{S{u_{\text{n}}}\gamma }}} \right]^{ - 1}} $ $ K_S^{\text{n}} $: 中性粒子表面损失系数; $ {D_{\text{n}}} $: 扩散系数; $ \gamma $: 表面黏附系数;
    $ {u_{\text{n}}} $: 平均热速度; V, S : 反应腔室体积和表面积
    E6 $ {\varLambda ^{ - 2}} = {\left( {{{\pi}}/{l}} \right)^2} + {\left( {{{2.405}}/{r}} \right)^2} $ $ \varLambda $: 有效扩散长度; l, r : 反应腔室高度和半径
    E7 $ K_{\text{S}}^{+} = 2{u_{\text{B}}}\left( {{{h_{\text{l}}}}}/{l} + {{{h_{\text{r}}}}}/{r}\right) $ $ K_{\text{S}}^{+} $: 离子表面损失系数; $ {u_{\text{B}}} $: 玻姆速度;
    E8 ${h_{\text{l}}} = 0.86{\left[ {3.0 + {l}/({{2\lambda }})} \right]^{-1/2}}$ ${h_{\text{l}}}$: 轴向边界-中心离子密度比; $\lambda $: 平均自由程
    E9 $ h_{\text{r}}=0.80\left(4.0 + {r}/{\lambda}\right)^{-1/2} $ ${h_{\text{r}}}$: 径向边界-中心离子密度比
    DownLoad: CSV

    类别 物种
    离子 $ \mathrm{CF}_3^+ $, ${\mathrm{CF}}_2^+ $, CF+, Ar+
    自由基 CF3, CF2, CF, COF, F, C, O
    中性产物 C2F4, CF4, F2, COF2, CO, CO2
    原料气体 C4F8, O2, Ar
    DownLoad: CSV

    类别 物种
    Ar* Ar(1s5)-Ar(1s2), Ar(2p10)-Ar(2p1)
    O* O(2p.1D), O(2p.1S), O(3s.3So), O(3s.5So), O(3p.3P), O(3p.5P), O(3p.3Do), O(3p.5Do)
    F* F(3s.2P), F(3s.4P), F(3s.2D), F(3p.2So), F(3p.4So), F(3p.2Po), F(3p.4Po), F(3p.2Do), F(3p.4Do)
    CF* CF(a4Σ), CF(A2Σ), CF(b4Π), CF(B2Δ), CF(C2Σ)
    ${\mathrm{CF}}^*_2 $ CF2(A1B1), CF2(X1A2), CF2(X3A2), CF2(X3B1), CF2(X3B2)
    CO* CO(a3Π), CO(A1Π), CO(b3Σ), CO(B1Σ)
    DownLoad: CSV

    反应编号 反应式 速率系数/(cm3·s–1) 参考文献
    a b c
    电子碰撞反应
    R1 e + C4F8 → 2C2F4 + e 9.58 × 10–8 0.042 8.572 [12]
    R2 e + C2F4 → 2CF2 + e 1.32 × 10–8 0.412 6.329 [12]
    R3 e + CF4 → CF3 + F + e 2.10 × 10–9 0.936 12.004 [35]
    R4 e + CF3 → CF2 + F + e 7.94 × 10–8 –0.452 12.100 [12]
    R5 e + CF2 → CF + F + e 1.16 × 10–8 –0.380 –14.350 [12]
    R6 e + CF → C + F + e 4.51 × 10–8 –0.110 8.941 [12]
    R7 e + F2 → 2F + e 1.08 × 10–8 –0.296 4.464 [12]
    R8 e + COF2 → COF + F + e 3.20 × 10–9 0.013 10.300 [36]
    R9 e + CO2 → CO + O + e 2.90 × 10–9 0.302 12.100 [37]
    R10 e + CO → C + O + e 1.54 × 10–8 0.270 14.600 [38]
    R11 e + O2 → 2O + e 1.71 × 10–8 –1.270 7.310 [39]
    R12 e + CF4 → ${\mathrm{CF}}_3^+ $ + F + 2e 2.29 × 10–8 0.680 18.304 [35]
    R13 e + CF3 → ${\mathrm{CF}}_2^+ $ + F + 2e 7.02 × 10–9 0.430 16.280 [12]
    R14 e + CF2 → CF+ + F + 2e 5.43 × 10–9 0.561 14.290 [12]
    R15 e + ${\mathrm{CF}}_3^+ $ → CF2 + F 6.54 × 10–8 –0.500 0.025 [13]
    R16 e + ${\mathrm{CF}}_2^+ $ → CF + F 6.54 × 10–8 –0.500 0.025 [13]
    R17 e + CF+ → C + F 6.54 × 10–8 –0.500 0.025 [13]
    R18 e + CF3 → ${\mathrm{CF}}_3^+ $ + 2e 1.36 × 10–9 0.796 9.057 [12]
    R19 e + CF2 → ${\mathrm{CF}}_2^+ $ + 2e 1.10 × 10–8 0.393 11.370 [12]
    R20 e + CF → CF+ + 2e 5.48 × 10–9 0.556 9.723 [12]
    R21 e + Ar → Ar+ + 2e 7.35 × 10–8 0.208 19.100 [40]
    电荷交换反应
    R22 $ {\mathrm{CF}}_2^+$ + CF → ${\mathrm{CF}}_3^+ $ + C 2.06 × 10–9 0 0 [13]
    R23 ${\mathrm{CF}}_2^+ $ + C → CF+ + CF 1.04 × 10–9 0 0 [13]
    R24 CF+ + CF3 → ${\mathrm{CF}}_3^+ $ + CF 1.71 × 10–9 0 0 [13]
    R25 CF+ + CF2 → ${\mathrm{CF}}_2^+ $ + CF 1.00 × 10–9 0 0 [13]
    R26 Ar+ + CF4 → ${\mathrm{CF}}_3^+ $ + F + Ar 4.80 × 10–10 0 0 [13]
    R27 Ar+ + CF3 → ${\mathrm{CF}}_2^+ $ + F + Ar 5.00 × 10–10 0 0 [13]
    R28 Ar+ + CF2 → CF+ + F + Ar 5.00 × 10–10 0 0 [13]
    氧化反应
    R29 CF3 + O → COF2 + F 3.30 × 10–11 0 0 [13]
    R30 CF2 + O → COF + F 3.10 × 10–11 0 0 [13]
    R31 CF + O → CO + F 6.60 × 10–11 0 0 [13]
    R32 COF + O → CO2 + F 9.30 × 10–11 0 0 [13]
    R33 COF + COF → COF2 + CO 1.00 × 10–11 0 0 [13]
    R34 C + CO2 → 2CO 1.00 × 10–15 0 0 [41]
    R35 COF + CF3 → COF2 + CF2 1.00 × 10–11 0 0 [13]
    R36 COF + CF2 → COF2 + CF 3.00 × 10–13 0 0 [13]
    R37 COF + CF3 → CO + CF4 1.00 × 10–11 0 0 [13]
    R38 COF + CF2 → CO + CF3 3.00 × 10–13 0 0 [13]
    重组反应
    R39 F + CF3 → CF4 2.00 × 10–11 0 0 [13]
    R40 F + CF2 → CF3 1.80 × 10–11 0 0 [13]
    R41 F + CF → CF2 9.96 × 10–11 0 0 [13]
    R42 F2 + CF3 → CF4 + F 1.90 × 10–14 0 0 [13]
    R43 F2 + CF2 → CF3 + F 8.30 × 10–14 0 0 [13]
    DownLoad: CSV

    反应编号 反应式 速率系数
    原子扩散
    R44 O → $\dfrac{1}{2} $O2 4.20 × 103 s–1
    R45 F → $\dfrac{1}{2} $F2 3.2 × 102 s–1
    离子扩散
    R46 ${\mathrm{CF}}_3^+ $ → CF3 6.73 × 103 s–1
    R47 ${\mathrm{CF}}_2^+ $ → CF2 7.91 × 103 s–1
    R48 CF+ → CF 1.00 × 104 s–1
    R49 Ar+ → Ar 8.85 × 103 s–1
    等效表面反应
    R50 C2F4 + C2F4 → C4F8 1.00 × 10–11 cm3/s
    R51 CF2 + CF2 → C2F4 1.00 × 10–11 cm3/s
    R52 C + F → CF 1.00 × 10–11 cm3/s
    DownLoad: CSV

    参数Kimura和NotoLee等[56]
    ICP腔室尺寸
    半径/mm8080
    高度/mm80130
    放电工况
    气压/mTorr3010
    功率/W140700
    气流/sccm4040
    等离子参数
    电子温度/eV2.93—3.053.60—4.25
    电子密度/cm–35.48 × 1010
    1.00 × 1011
    5.00 × 1010
    6.20 × 1010
    DownLoad: CSV
    Baidu
  • [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

  • [1] Wang Jun-Wu, Xuan Hong-Wen, Yu Hang-Hang, Wang Xin-Bing, Vassily S. Zakharov. Simulation of extreme ultraviolet radiation of laser induced discharge plasma. Acta Physica Sinica, 2024, 73(1): 015203. doi: 10.7498/aps.73.20231158
    [2] Meng Ju, He Zhen-Cen, Yan Jun, Wu Ze-Qing, Yao Ke, Li Ji-Guang, Wu Yong, Wang Jian-Guo. Effects of electric quadrupole transitions on ion energy-level populations of in electron beam ion trap plasma. Acta Physica Sinica, 2022, 71(19): 195201. doi: 10.7498/aps.71.20220489
    [3] Han Xiao-Ying, Li Ling-Xiao, Dai Zhen-Sheng, Zheng Wu-Di, Gu Pei-Jun, Wu Ze-Qing. A general model for rapid simulation of hot dense plasmas under non-local thermal equilibrium conditions. Acta Physica Sinica, 2021, 70(11): 115202. doi: 10.7498/aps.70.20201946
    [4] Wang Yan-Fei, Zhu Xi-Ming, Zhang Ming-Zhi, Meng Sheng-Feng, Jia Jun-Wei, Chai Hao, Wang Yang, Ning Zhong-Xi. Plasma optical emission spectroscopy based on feedforward neural network. Acta Physica Sinica, 2021, 70(9): 095211. doi: 10.7498/aps.70.20202248
    [5] Zhang Tai-Yang, Chen Ran. A collisional-radiative model for lithium impurity in plasma boundary region of Experimental Advanced Superconducting Tokamak. Acta Physica Sinica, 2017, 66(12): 125201. doi: 10.7498/aps.66.125201
    [6] Wu Jian, Li Xing-Wen, Li Mo, Yang Ze-Feng, Shi Zong-Qian, Jia Shen-Li, Qiu Ai-Ci. Comparisons and analyses of the aluminum K-shell spectroscopic models. Acta Physica Sinica, 2015, 64(20): 205201. doi: 10.7498/aps.64.205201
    [7] Xie Hui-Qiao, Tan Yi, Liu Yang-Qing, Wang Wen-Hao, Gao Zhe. A collisional-radiative model for the helium plasma in the sino-united spherical tokamak and its application to the line intensity ratio diagnostic. Acta Physica Sinica, 2014, 63(12): 125203. doi: 10.7498/aps.63.125203
    [8] Du Yong-Quan, Liu Wen-Yao, Zhu Ai-Min, Li Xiao-Song, Zhao Tian-Liang, Liu Yong-Xin, Gao Fei, Xu Yong, Wang You-Nian. Phase resolved optical emission spectroscopy of dual frequency capacitively coupled plasma. Acta Physica Sinica, 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [9] Zhu Zhu-Qing, Wang Xiao-Lei. Experimental study on emission spectra of air plasma induced by femtosecond laser pulses. Acta Physica Sinica, 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [10] Gao Xun, Song Xiao-Wei, Guo Kai-Min, Tao Hai-Yan, Lin Jing-Quan. Optical emission spectra of Si plasma induced by femtosecond laser pulse. Acta Physica Sinica, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [11] Pu Yu-Dong, Yang Jia-Min, Jin Feng-Tao, Zhang Lu, Ding Yong-Kun. Characteristics of emission spectroscopyof radiatively heated Al plasma. Acta Physica Sinica, 2011, 60(4): 045210. doi: 10.7498/aps.60.045210
    [12] Yu Xin-Ming, Cheng Shu-Bo, Yi You-Gen, Zhang Ji-Yan, Pu Yu-Dong, Zhao Yang, Hu Feng, Yang Jia-Min, Zheng Zhi-Jian. Analysis of formation mechanism of Li-like satellites in aluminum plasma and experimental application. Acta Physica Sinica, 2011, 60(8): 085201. doi: 10.7498/aps.60.085201
    [13] Li Jing, Xie Wei-Ping, Huang Xian-Bin, Yang Li-Bing, Cai Hong-Chun, Pu Yi-Kang. Application of a collisinal-radiative model for the analysis of K-shell line spectra emitted by Z-pinch plasma. Acta Physica Sinica, 2010, 59(11): 7922-7929. doi: 10.7498/aps.59.7922
    [14] Duan Yao-Yong, Guo Yong-Hui, Qiu Ai-Ci, Wu Gang. An extended model for ion charge state distribution of plasmas in collisional radiative steady state. Acta Physica Sinica, 2010, 59(8): 5588-5595. doi: 10.7498/aps.59.5588
    [15] Yi You-Gen, Tang Jing-Wu, Huang Du-Zhi. Theoretical calculations of X-ray spectra of Au plasma. Acta Physica Sinica, 2010, 59(11): 7769-7774. doi: 10.7498/aps.59.7769
    [16] Li Yang-Ping, Liu Zheng-Tang. Plasma emission diagnostics for the optimization of deposition parameters in RF magnetron sputtering of GaP film. Acta Physica Sinica, 2009, 58(7): 5022-5028. doi: 10.7498/aps.58.5022
    [17] Niu Tian-Ye, Cao Jin-Xiang, Liu Lei, Liu Jin-Ying, Wang Yan, Wang Liang, Lü You, Wang Ge, Zhu Ying. The techniques of single probe and emission spectroscopy diagnostics in low temperature argon plasmas. Acta Physica Sinica, 2007, 56(4): 2330-2336. doi: 10.7498/aps.56.2330
    [18] Li Yong, Sun Cheng-Wei, Liu Zhi-Wen, Zhang Qing-Yu. Study of ZnO film growth by reactive magnetron sputtering using plasma emission spectra. Acta Physica Sinica, 2006, 55(8): 4232-4237. doi: 10.7498/aps.55.4232
    [19] Wan Xiong, Yu Sheng-Lin, Wang Chang-Kun, Le Shu-Ping, Li Bing-Ying, He Xing-Dao. Emission spectral tomography algorithm based on multi-objective optimization and its application in plasma diagnosis. Acta Physica Sinica, 2004, 53(9): 3104-3113. doi: 10.7498/aps.53.3104
    [20] Zhang Hong, Cheng Xin-Lu, Yang Xiang-Dong, Xie Fang-Jun, Zhang Ji-Yan, Yang Guo-Hong. Study on the relationship of average ionization stage with the electron temperat ure for Au laser produced plasma. Acta Physica Sinica, 2003, 52(12): 3098-3101. doi: 10.7498/aps.52.3098
Metrics
  • Abstract views:  520
  • PDF Downloads:  21
  • Cited By: 0
Publishing process
  • Received Date:  31 August 2025
  • Accepted Date:  10 November 2025
  • Available Online:  13 November 2025
  • Published Online:  05 December 2025
    返回文章
    返回
    Baidu
    map