-
强流重离子束驱动产生的高能量密度物质具有大体积、状态均匀、材料种类多样等显著特色, 为高能量密度物理研究提供了新的研究途径. 我国“十二五”规划建设的强流重离子加速器装置(HIAF)正加速推进, 将为重离子束驱动的高能量密度物理实验研究提供独特的实验平台与新的机遇. 本文基于HIAF上重离子束流参数特点, 利用自主研发的一维辐射流体程序Aardvark进行了数值模拟计算, 预测了铀离子束与铅靶相互作用下可产生的物质状态. 结果清晰展示了重离子束能量加载过程中, 靶物质的单位质量的能量沉积、温度、压强和密度的含时演化图像, 以及靶物质轴心处产生的大面积均匀区. 研究发现随着重离子束流强度的逐步提升, 靶物质的温度等状态参数呈现出非线性的增长趋势, 靶物质内部还引发了冲击波现象. 本研究还构建了铀离子束与多种靶物质相互作用产生的靶物质状态参数的数据库. 相关模拟数据不仅为HIAF上重离子束驱动的高能量密度物理实验研究规划提供重要的前期理论指导, 而且为深入研究高能量密度物质的产生、演化及其特性等提供了关键的理论支持. 该工作将为推动我国在强流重离子束驱动的高能量密度物理领域的研究工作发挥重要作用.
-
关键词:
- 强流重离子束 /
- 高能量密度物质 /
- 流体动力学 /
- Aardvark程序 /
- 强流重离子加速器装置
The unique properties of heavy-ion beam-driven high-energy density matter (HEDM), characterized by macroscale uniformity, extended volumetric dimension, and material diversity, present novel opportunities for advancing high-energy density physics (HEDP). The High-Intensity Heavy-Ion Accelerator Facility (HIAF), a cornerstone project which is initiated during China’s 12th Five-Year Plan, is currently being accelerated in construction. After completion, it will become a primary platform for experimental research on the HEDP phenomenon induced by intense heavy-ion beams. In this work, a self-developed 1D radiation hydrodynamics code, Aardvark, is used to simulate the interaction dynamics between uranium ion beams and cylindrical targets under HIAF-relevant beam parameters. The results show time-evolution images of specific energy deposition, temperature, pressure, and density of the target material in the radial direction during heavy-ion beam energy loading. By comparing the state of matter produced by the ion beam hitting the target at different beam energy and intensity, a interesting phenomenon is observed, i.e. a plateau region of temperature and pressure are formed near the axis center. This result indicates that under the action of the heavy-ion beam, a substantially homogeneous region is formed in the axis center the target material, further elucidating the salient characteristics of the heavy-ion beam-driven high energy density material, i.e. homogeneous state. The state parameters of the target matter undergo significant changes in the process, for a beam duration of 150 ns and a beam intensity of 4 × 1011 ppp (particle per pulse) and beam energy of 500 MeV/u. A sharp discontinuity in pressure and density occurs, forming a phenomenon known as a shock wave. Thereby, systematic modulation of heavy ion beam parameters enables investigation into the generation and propagation dynamics of shock waves. This study further constructs a systematic database that meticulously records the state parameters of target materials when uranium ion beams interact with various types of targets. The relevant simulation data provide important theoretical guidance for planning heavy-ion beam-driven high-energy density physics experiments at HIAF and crucial theoretical support for in-depth research on the generation, evolution, and properties of high-energy density matter. These advances in calculation position HIAF as a transformative platform for detecting extreme-state substances, with is of direct implications in studying inertial confinement fusion and modeling astrophysical plasma. -
Keywords:
- intense heavy ion beam /
- high energy density matter /
- fluid dynamics /
- Aardvark program /
- high intensity heavy-ion accelerator facility
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] -
HIHEX@FAIR HEDP@HIAF Ion $ \mathrm{U}^{28+} $ $ \mathrm{U}^{92+} $ E/AGeV $ 2\ $ $ 0.8—1\ $ Intensity/ppp $ 2 \times 10^{12} \ $ $ (0.1—2) \times 10^{12} \ $ Pulse length/ns 50 $ 50—100 \ $ $ \Delta {E} / {E} $ $ \pm 1 {\text{%}} $ $ \pm 0.5{\text{%}} $ Beam spot size/mm $ 1 \ $ $ 0.5—1 \ $ Code Pulse
lengths
/nsE/
$ (\mathrm{kJ} \cdot \mathrm{g}^{-1}) $$ {T}_{\mathrm{e}} /\mathrm{K} $ $\rho/$
$ ({\rm g} \cdot {\rm cm}^{-3}) $P/GPa BIG2 100 14.8 58000.0 10.2 75.0 150 14.0 55000.0 9.3 58.0 Aardvark 100 19.1 55205.0 9.9 84.4 150 18.9 52613.7 8.8 69.4 Target Intensity
/ppp$\rho/({\rm g}{\cdot}{\rm cm}^{-3}) $ $ {P}/\mathrm{GPa} $ $ {T_{{\mathrm{e}}}}/\mathrm{K} $ $ E/(\mathrm{kJ}{\cdot}\mathrm{g}^{-1}) $ Target Intensity
/ppp$\rho/({\rm g}{\cdot}{\rm cm}^{-3}) $ $ {P}/\mathrm{GPa} $ $ {T_{{\mathrm{e}}}}/\mathrm{K} $ $ E/(\mathrm{kJ}{\cdot}\mathrm{g}^{-1}) $ Pb $ 10^9 $ 11.33 1.48 2561.12 0.17 Al $ 10^9 $ 2.69 0.90 1089.32 0.26 $ 10^{10} $ 11.18 9.98 13279.05 1.86 $ 10^{10} $ 2.65 4.02 4952.81 2.57 $ 10^{11} $ 10.07 79.09 52577.75 17.54 $ 10^{11} $ 2.26 22.81 24508.74 25.95 $ 10^{12} $ 7.65 441.22 209187.11 177.03 $ 10^{12} $ 1.13 93.63 91883.41 264.66 Au $ 10^9 $ 19.21 7.75 1617.67 0.18 LiF $ 10^9 $ 2.63 0.63 696.27 0.23 $ 10^{10} $ 18.50 49.24 10909.41 1.76 $ 10^{10} $ 2.59 3.49 4293.67 2.28 $ 10^{11} $ 16.74 172.76 56315.57 17.54 $ 10^{11} $ 2.25 20.8 22396.72 23.08 $ 10^{12} $ 10.27 574.96 199485.15 178.75 $ 10^{12} $ 1.16 88.5 87265.98 235.73 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30]
计量
- 文章访问数: 475
- PDF下载量: 32
- 被引次数: 0