搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

引用本文:
Citation:

袁翔, 张子发, 王明吉, 何丹敏, 鹿颖申, 洪峰, 蒋最敏, 徐闰, 王应民, 马忠权, 宋宏伟, 徐飞
cstr: 32037.14.aps.74.20250372

Dual-absorption-layer heterojunction strategy for enhancing photovoltaic performance of all-perovskite tandem solar cell

YUAN Xiang, ZHANG Zifa, WANG Mingji, HE Danmin, LU Yingshen, HONG Feng, JIANG Zuimin, XU Run, WANG Yingmin, MA Zhongquan, SONG Hongwei, XU Fei
cstr: 32037.14.aps.74.20250372
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文提出一种双吸收层钙钛矿异质结(dual-absorption-layer perovskite heterojunction, DPHJ)策略, 即通过将能带交错的II型钙钛矿异质结(p-pCsPbI2Br-CsPbIBr2)应用到全钙钛矿叠层太阳电池作为顶电池的双层结构的吸收层. 电池模拟结果表明, 与顶电池为单一吸收层CsPbI2Br的全钙钛矿叠层太阳电池相比, DPHJ的引入使得叠层太阳电池的开路电压显著增强(从2.16到2.25 V)、短路电流密度进一步提升(从15.96到16.76 mA⋅cm–2). 这主要归因于顶电池的双层结构的吸收层在CsPbI2Br/CsPbIBr2界面处形成能带弯曲, 诱导产生增强的内建电场, 促进载流子输运, 抑制了吸收层体内的非辐射复合. 由此基于DPHJ策略的叠层太阳电池可达到高的理论能量转换效率(32.47%). 进一步实验结果表明, 相比于单层CsPbI2Br(激子结合能E2 = 101.9 meV、电子-声子耦合强度$ {\gamma }_{\text{ac}}=1.2\times {10}^{-2},\; {\gamma }_{\text{LO}}=6.9\times {10}^{3} $), 双吸收层薄膜展现出更高的激子结合能(E2 = 110.7 meV)和更低的电子-声子耦合强度($ {\gamma }_{\text{ac}}=1.1\times {10}^{-2}, \;{\gamma }_{\text{LO}}=6.3\times {10}^{3} $), 表现出更强的光、热稳定性, 这有利于制备长效稳定的全钙钛矿叠层太阳电池.
    Organic cations in hybrid organic-inorganic perovskite solar cells are susceptible to decomposition under high temperatures and ultraviolet light, leading their power conversion efficiency (PCE) to decrease. All-inorganic perovskite solar cells exhibit both high PCE and superior photothermal stability, making them promising candidates for single-junction and tandem photovoltaic applications. The mixed-halide perovskite CsPbI2Br has received much attention as a top cell in semi-transparent and tandem solar cells due to its excellent thermal stability and suitable bandgap (1.90 eV). Although the PCE of CsPbI2Br-based solar cells is approaching its theoretical limit, the energy loss caused by non-radiative recombination remains a major barrier to further improving performance. This non-radiative recombination is mainly caused by inadequate band alignment between the absorption layer and the transport layer, resulting in the loss of open-circuit voltage (VOC) and decrease of short-circuit current density (JSC). Two-dimensional perovskite passivation formed through solution processing can mitigate interfacial recombination, but it can also impede efficient charge transport. Constructing three-dimensional perovskite structures not only provides an effective solution to these limitations but also enhances sunlight absorption and facilitates carrier transport. In this study, we propose a dual-absorption-layer perovskite heterojunction (DPHJ) strategy, which involves integrating a staggered type-II perovskite heterojunction (p-pCsPbI2Br-CsPbIBr2) into the absorption layer of the top cell in an all-perovskite tandem solar cell. The simulation result indicates that stacking a 100-nm-thick CsPbIBr2 layer atop a 300-nm-thick CsPbI2Br layer greatly enhances the PCE of the single-junction device from 19.46% to 22.29%. This improvement is mainly attributed to band bending at the CsPbI2Br/CsPbIBr2 interface, which enhances the built-in electric field, facilitates carrier transport, and suppresses non-radiative recombination within the absorption layer. Compared with the tandem solar cell utilizing a single-absorption-layer CsPbI2Br top cell, the DPHJ-based tandem solar cell significantly increases VOC from 2.16 to 2.25 V and JSC from 15.96 to 16.76 mA⋅cm–2. As a result, the DPHJ-based tandem solar cell achieves a high theoretical PCE of 32.47%. In addition, the DPHJ-based tandem solar cell exhibits a significantly enhanced external quantum efficiency in a wavelength range of 500–580 nm, which can be attributed to the band-edge absorption of CsPbIBr2. This enhanced absorption generates more photogenerated carriers, thereby significantly improving the JSC. The VOC and PCE values in this study exceed those experimentally reported values of current CsPbI2Br single-junction and all-perovskite tandem solar cells. Compared with the single-layer CsPbI2Br (E2 = 101.9 meV, electron-phonon coupling strength $ {\gamma _{{\text{ac}}}} = 1.2 \times {10^{ - 2}},{\text{ }}{\gamma _{{\text{LO}}}} = 6.9 \times {10^3} $), the double-absorption-layer film exhibits a high exciton binding energy (E2 = 110.7 meV) and reduced electron-phonon coupling strength ($ {\gamma _{{\text{ac}}}} = 1.1 \times {10^{ - 2}},{\text{ }}{\gamma _{{\text{LO}}}} = $$ 6.3 \times {10^3} $), which helps suppress phase segregation and enhance both optical and thermal stability, which is favorable for fabricating long-term stable all-perovskite tandem solar cells. This work provides new ideas and theoretical guidance for improving the efficiency and stability of all-perovskite tandem solar cells. In addition, it also proposes a universal design concept for optimizing absorption layers in all-perovskite multijunction cells, which is expected to further advance the research in this field.
      通信作者: 王应民, wym@nchu.edu.cn ; 徐飞, feixu@shu.edu.cn
    • 基金项目: 国家重点研发计划 (批准号: 2024YFA1209500)、国家自然科学基金(批准号: 62350054, 12175131, 12374379)、上饶科技计划(批准号: 2022A004)和江西省重点研发计划(批准号: 20223BBE51026, 20232BBE50035)资助的课题.
      Corresponding author: WANG Yingmin, wym@nchu.edu.cn ; XU Fei, feixu@shu.edu.cn
    • Funds: Project supported by the National Key Research and Development Projiect of China (Grant No. 2024YFA1209500), the National Natural Science Foundation of China (Grant Nos. 62350054, 12175131, 12374379), the Shangrao Technology Project, China (Grant No. 2022A004), and the Key Research and Development Project of Jiangxi Province, China (Grant Nos. 20223BBE51026, 20232BBE50035).
    [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

    [59]

    [60]

    [61]

    [62]

    [63]

    [64]

    [65]

    [66]

    [67]

    [68]

    [69]

  • 参数CsPbI2BrCsPbIBr2CsSnI3NiOXPCBMSnO2Spiro-OMeTAD
    厚度/nm30010080030305050
    受主浓度/cm–31×10151×10155×10161×1015001×1019
    施主浓度/cm–300005×10171×10190
    带隙/eV1.922.111.273.5023.492.6
    导带有效态密度/cm–35.1×10171×10191.58×10192.8×10191×10194.36×10182.5×1020
    价带有效态密度/cm–31.8×10181×10191.47×10181.8×10191×10192.52×10192.5×1020
    电子亲合能/eV4.163.564.471.804.304.312.60
    相对介电常数7.432010.5910.70493
    电子迁移率/(cm2⋅V–1⋅s–1)1.02×1052.3×1034.37121×10–42402×10–4
    空穴迁移率/(cm2⋅V–1⋅s–1)1.93×1043.2×1024.37251×10–2252×10–4
    下载: 导出CSV

    SampleE1/meVE2/meVγacγLOELO/meV
    CsPbI2Br7.85101.91.2×10–26.9×103156.6
    CsPbIBr29.2585.81.8×10–35.8×103167.7
    DPHJ8.98110.71.1×10–26.3×103162.5
    下载: 导出CSV
    Baidu
  • [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

    [59]

    [60]

    [61]

    [62]

    [63]

    [64]

    [65]

    [66]

    [67]

    [68]

    [69]

  • [1] 袁赫泽, 陈新亮, 梁柄权, 孙爱鑫, 王雪骄, 赵颖, 张晓丹. 晶硅太阳电池钝化层技术研究进展. 必威体育下载 , 2025, 74(4): 047801. doi: 10.7498/aps.74.20241292
    [2] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 必威体育下载 , 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [3] 张盛源, 夏康龙, 张茂林, 边昂, 刘增, 郭宇锋, 唐为华. 基于GaN/(BA)2PbI4异质结的自供电双模式紫外探测器. 必威体育下载 , 2024, 73(6): 067301. doi: 10.7498/aps.73.20231698
    [4] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能. 必威体育下载 , 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [5] 李雪, 曹宝龙, 王明昊, 冯增勤, 陈淑芬. 基于改性空穴注入层与复合发光层的高效钙钛矿发光二极管. 必威体育下载 , 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [6] 郤育莺, 韩悦, 李国辉, 翟爱平, 冀婷, 郝玉英, 崔艳霞. 异质结构在光伏型卤化物钙钛矿光电转换器件中的应用. 必威体育下载 , 2020, 69(16): 167804. doi: 10.7498/aps.69.20200591
    [7] 崔兴华, 许巧静, 石标, 侯福华, 赵颖, 张晓丹. 宽带隙钙钛矿材料及太阳电池的研究进展. 必威体育下载 , 2020, 69(20): 207401. doi: 10.7498/aps.69.20200822
    [8] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 必威体育下载 , 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [9] 宋蕊, 冯凯, 林上金, 何曼丽, 仝亮. 钙钛矿NaFeF3结构物性的理论研究及应力和掺杂调控. 必威体育下载 , 2019, 68(14): 147101. doi: 10.7498/aps.68.20190573
    [10] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 必威体育下载 , 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [11] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管. 必威体育下载 , 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [12] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 必威体育下载 , 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [13] 陈新亮, 陈莉, 周忠信, 赵颖, 张晓丹. Cu2O/ZnO氧化物异质结太阳电池的研究进展. 必威体育下载 , 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [14] 夏祥, 刘喜哲. CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用. 必威体育下载 , 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [15] 杨旭东, 陈汉, 毕恩兵, 韩礼元. 高效率钙钛矿太阳电池发展中的关键问题. 必威体育下载 , 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [16] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响. 必威体育下载 , 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [17] 薛源, 郜超军, 谷锦华, 冯亚阳, 杨仕娥, 卢景霄, 黄强, 冯志强. 薄膜硅/晶体硅异质结电池中本征硅薄膜钝化层的性质及光发射谱研究. 必威体育下载 , 2013, 62(19): 197301. doi: 10.7498/aps.62.197301
    [18] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池. 必威体育下载 , 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [19] 陈鸣波, 崔容强, 王亮兴, 张忠卫, 陆剑峰, 池卫英. p-n 型GaInP2/GaAs叠层太阳电池研究. 必威体育下载 , 2004, 53(11): 3632-3636. doi: 10.7498/aps.53.3632
    [20] 李书平, 王仁智, 郑永梅, 蔡淑惠, 何国敏. 平均键能方法在应变层异质结带阶研究中的应用. 必威体育下载 , 2000, 49(8): 1441-1446. doi: 10.7498/aps.49.1441
计量
  • 文章访问数:  983
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-22
  • 修回日期:  2025-04-22
  • 上网日期:  2025-05-16
  • 刊出日期:  2025-07-20

返回文章
返回
Baidu
map